ACADEMIC REGULATIONS COURSE STRUCTURE AND DETAILED SYLLABUS

COMPUTER SCIENCE AND ENGINEERING

For

B.TECH. FOUR YEAR DEGREE COURSE (Applicable for the batches admitted from 2013-14) (I - IV Years Syllabus)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD KUKATPALLY, HYDERABAD - 500 085.

ACADEMIC REGULATIONS R13 FOR B. TECH. (REGULAR)

Applicable for the students of B. Tech. (Regular) from the Academic Year 2013-14 and onwards

1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfils the following academic regulations:

- 1.1 The candidate shall pursue a course of study for not less than four academic years and not more than eight academic years.
- 1.2 After eight academic years of course of study, the candidate is permitted to write the examinations for two more years.
- 1.3 The candidate shall register for 224 credits and secure 216 credits with compulsory subjects as listed in Table-1.

Serial Number	Subject Particulars
1	All practical subjects
2	Industry oriented mini project
3	Comprehensive Viva-Voce
4	Seminar
5	Project work

Table 1: Compulsory Subjects

2 The students, who fail to fulfill all the academic requirements for the award of the degree within ten academic years from the year of their admission, shall forfeit their seats in B. Tech. course.

3 Courses of study

The following courses of study are offered at present as specializations for the B. Tech. Course:

Branch Code	Branch
01	Civil Engineering
02	Electrical and Electronics Engineering
03	Mechanical Engineering
04	Electronics and Communication Engineering
05	Computer Science and Engineering
08	Chemical Engineering
10	Electronics and Instrumentation Engineering

11	Bio-Medical Engineering
12	Information Technology
14	Mechanical Engineering (Mechatronics)
17	Electronics and Telematics Engineering
18	Metallurgy and Material Technology
19	Electronics and Computer Engineering
20	Mechanical Engineering (Production)
21	Aeronautical Engineering
22	Instrumentation and Control Engineering
23	Biotechnology
24	Automobile Engineering
25	Mining Engineering
26	Mining Machinery
27	Petroleum Engineering
28	Civil and Environmental Engineering
29	Mechanical Engineering (Nano Technology)
30	Agricultural Engineering
31	Computer Science & Technology

4 <u>Credits</u>

	l Year		Semester	
	Periods / Week	Credits	Periods / Week	Credits
Theory	03+1/03 02	06 04	04	04
Practical	02	04	03	02
Flactical	03	04	03	02
Drawing	02+03	06	03	02
			06	04
Mini Project	_		_	02
Comprehensive				
Viva Voce	—	—	—	02
Seminar	—	_	6	02
Project	—		15	10

5 Distribution and Weightage of Marks

- 5.1 The performance of a student in each semester or I year shall be evaluated subject-wise for a maximum of 100 marks for a theory and 75 marks for a practical subject. In addition, industry-oriented miniproject, seminar and project work shall be evaluated for 50, 50 and 200 marks, respectively.
- 5.2 For theory subjects the distribution shall be 25 marks for Internal Evaluation and 75 marks for the End-Examination.
- For theory subjects, during a semester there shall be 2 mid-term 5.3 examinations. Each mid- term examination consists of one objective paper, one essay paper and one assignment. The objective paper and the essay paper shall be for 10 marks each with a total duration of 1 hour 20 minutes (20 minutes for objective and 60 minutes for essay paper). The Objective paper is set with 20 bits of multiple choice, fill-in the blanks and matching type of questions for a total of 10 marks. The essay paper shall contain 4 full questions (one from each unit) out of which, the student has to answer 2 questions, each carrying 5 marks. While the first mid-term examination shall be conducted on 1 to 2.5 units of the syllabus, the second mid-term examination shall be conducted on 2.5 to 5 units. Five (5) marks are allocated for Assignments (as specified by the subject teacher concerned). The first Assignment should be submitted before the conduct of the first mid-examination, and the second Assignment should be submitted before the conduct of the second mid-examination. The total marks secured by the student in each mid-term examination are evaluated for 25 marks, and the average of the two mid-term examinations shall be taken as the final marks secured by each candidate. However, in the I year, there shall be 3 mid term examinations, each for 25 marks, along with 3 assignments in a similar pattern as above (1st mid shall be from Unit-I, 2nd mid shall be 2 &3 Units and 3rd mid shall be 4 & 5 Units) and the average marks of the examinations secured (each evaluated for a total of 25 marks) in each subject shall be considered to be final marks for the internals/sessionals. If any candidate is absent from any subject of a mid-term examination, an on-line test will be conducted for him by the University.

The details of the Question Paper pattern without deviating from the R13 regulations as notified in the website is as follows:

- The End semesters Examination will be conducted for 75 marks which consists of two parts viz. i). Part-A for 25 marks, ii). Part –B for 50 marks.
- Part-A is compulsory question which consists of ten subquestions. The first five sub-questions are from each unit and carries 2 marks each. The next five sub-questions

6

are one from each unit and carries 3 marks each.
Part-B consists of five Questions (numbered from 2 to 6) carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice (that means there will be two questions from each unit and the student should answer any one question)

- 5.4 For practical subjects there shall be a continuous evaluation during a semester for 25 sessional marks and 50 end semester examination marks. Out of the 25 marks for internal evaluation, day-to-day work in the laboratory shall be evaluated for 15 marks and internal practical examination shall be evaluated for 10 marks conducted by the laboratory teacher concerned. The end semester examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed from the clusters of colleges which are decided by the examination branch of the University.
- 5.5 For the subject having design and/or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and Estimation, the distribution shall be 25 marks for internal evaluation (15 marks for day-to-day work and 10 marks for internal tests) and 75 marks for end semester examination. There shall be two internal tests in a Semester and the average of the two shall be considered for the award of marks for internal tests. However, in the I year class, there shall be three tests and the average will be taken into consideration.
- 5.6 There shall be an industry-oriented Mini-Project, in collaboration with an industry of their specialization, to be taken up during the vacation after III year II Semester examination. However, the mini-project and its report shall be evaluated along with the project work in IV year II Semester. The industry oriented mini-project shall be submitted in a report form and presented before the committee. It shall be evaluated for 50 marks. The committee consists of an external examiner, head of the department, the supervisor of the mini-project and a senior faculty member of the department. There shall be no internal marks for industry-oriented mini-project.
- 5.7 There shall be a seminar presentation in IV year II Semester. For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his understanding of the topic, and submit it to the department. It shall be evaluated by the departmental committee consisting of head of the department, seminar supervisor and a senior faculty member. The seminar report shall be evaluated for 50 marks. There shall be no external examination for the seminar.
- 5.8 There shall be a Comprehensive Viva-Voce in IV year II semester.

The Comprehensive Viva-Voce will be conducted by a Committee consisting of Head of the Department and two Senior Faculty members of the Department. The Comprehensive Viva-Voce is intended to assess the student's understanding of the subjects he studied during the B. Tech. course of study. The Comprehensive Viva-Voce is evaluated for 100 marks by the Committee. There are no internal marks for the Comprehensive Viva-Voce.

- 5.9 Out of a total of 200 marks for the project work, 50 marks shall be allotted for Internal Evaluation and 150 marks for the End Semester Examination (Viva Voce). The End Semester Examination of the project work shall be conducted by the same committee as appointed for the industry-oriented mini-project. In addition, the project supervisor shall also be included in the committee. The topics for industry oriented mini project, seminar and project work shall be different from one another. The evaluation of project work shall be made at the end of the IV year. The Internal Evaluation shall be on the basis of two seminars given by each student on the topic of his project.
- 5.10 The Laboratory marks and the sessional marks awarded by the College are subject to scrutiny and scaling by the University wherever necessary. In such cases, the sessional and laboratory marks awarded by the College will be referred to a Committee. The Committee will arrive at a scaling factor and the marks will be scaled accordingly. The recommendations of the Committee are final and binding. The laboratory records and internal test papers shall be preserved in the respective institutions as per the University rules and produced before the Committees of the University as and when asked for.

6 Attendance Requirements

- 6.1 A student is eligible to write the University examinations only if he acquires a minimum of 75% of attendance in aggregate of all the subjects.
- 6.2 Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester or I year may be granted by the College Academic Committee
- 6.3 Shortage of Attendance below 65% in aggregate shall not be condoned.
- 6.4 A student who is short of attendance in semester / I year may seek re-admission into that semester/I year when offered within 4 weeks from the date of the commencement of class work.
- 6.5 Students whose shortage of attendance is not condoned in any semester/I year are not eligible to write their end semester examination of that class and their registration stands cancelled.

- 6.6 A stipulated fee shall be payable towards condonation of shortage of attendance.
- 6.7 A student will be promoted to the next semester if he satisfies the attendance requirement of the present semester/I year, as applicable, including the days of attendance in sports, games, NCC and NSS activities.
- 6.8 If any candidate fulfills the attendance requirement in the present semester or I year, he shall not be eligible for readmission into the same class.

7 Minimum Academic Requirements

The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.6.

- 7.1 A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/ practical design/drawing subject/project and secures not less than 35% of marks in the end semester exam, and minimum 40% of marks in the sum total of the mid-term and end semester exams.
- 7.2 A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement.
- 7.3 A student will not be promoted from II year to III year unless he fulfils the academic requirement of 34 credits up to II year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
- 7.4 A student shall be promoted from III year to IV year only if he fulfils the academic requirements of 56 credits up to III year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.
- 7.5 A student shall register and put up minimum attendance in all 224 credits and earn 216 credits. Marks obtained in the best 216 credits shall be considered for the calculation of percentage of marks.
- 7.6 Students who fail to earn 216 credits as indicated in the course structure within ten academic years (8 years of study + 2 years additionally for appearing for exams only) from the year of their admission, shall forfeit their seat in B.Tech. course and their admission stands cancelled.

8 <u>Course pattern</u>

- 8.1 The entire course of study is for four academic years. I year shall be on yearly pattern and II, III and IV years on semester pattern.
- 8.2 A student, eligible to appear for the end examination in a subject, but absent from it or has failed in the end semester examination, may

write the exam in that subject during the period of supplementary exams.

8.3 When a student is detained for lack of credits/shortage of attendance, he may be re-admitted into the next semester/year. However, the academic regulations under which he was first admitted, shall continues to be applicable to him.

9 Award of Class

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	% of marks to be secured	
First Class with Distinction	70% and above	From the aggregate
First Class	Below 70 but not less than 60%	marks secured from
Second Class	Below 60% but not less than 50%	216 Credits.
Pass Class	Below 50% but not less than 40%	

The marks obtained in internal evaluation and end semester / I year examination shall be shown separately in the memorandum of marks.

10 Minimum Instruction Days

The minimum instruction days for each semester/I year shall be 90/ 180 days.

- 11 There shall be no branch transfers after the completion of the admission process.
- 12 There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Hyderabad.

13 WITHHOLDING OF RESULTS

If the student has not paid the dues, if any, to the university or if any case of indiscipline is pending against him, the result of the student will be withheld and he will not be allowed into the next semester. His degree will be withheld in such cases.

14. TRANSITORY REGULATIONS

- 14.1 Discontinued, detained, or failed candidates are eligible for readmission as and when next offered.
- 14.2 After the revision of the regulations, the students of the previous batches will be given two chances for passing in their failed subjects, one supplementary and the other regular. If the students cannot

clear the subjects in the given two chances, they shall be given equivalent subjects as per the revised regulations which they have to pass in order to obtain the required number of credits.

- 14.3 In case of transferred students from other Universities, the credits shall be transferred to JNTUH as per the academic regulations and course structure of the JNTUH.
- 15. General
- 15.1 Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- 15.2 The academic regulation should be read as a whole for the purpose of any interpretation.
- 15.3 In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- 15.4 The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.
- 15.5 The students seeking transfer to colleges affiliated to JNTUH from various other Universities/Institutions, have to pass the failed subjects which are equivalent to the subjects of JNTUH, and also pass the subjects of JNTUH which the candidates have not studied at the earlier Institution on their own without the right to sessional marks. Further, though the students have passed some of the subjects at the earlier institutions, if the same subjects are prescribed in different semesters of JNTUH, the candidates have to study those subjects in JNTUH in spite of the fact that those subjects are repeated.

* * *

Academic Regulations R13 For B.Tech. (Lateral Entry Scheme)

Applicable for the students admitted into II year B. Tech. (LES) from the Academic Year 2013-14 and onwards

1 Eligibility for award of B. Tech. Degree (LES)

I. The LES candidates shall pursue a course of study for not less than three academic years and not more than six academic years.

II. They shall be permitted to write the examinations for two more years after six academic years of course work.

 The candidate shall register for 168 credits and secure 160 credits from II to IV year B.Tech. Program (LES) for the award of B.Tech. degree with compulsory subjects as listed in Table-1.

Serial Number	Subject Particulars
1	All practical subjects
2	Industry oriented mini project
3	Comprehensive Viva-Voce
4	Seminar
5	Project work

Table 1: Compulsory Subjects

- The students, who fail to fulfil the requirement for the award of the degree in 8 consecutive academic years (6 years of study + 2 years additionally for appearing exams only) from the year of admission, shall forfeit their seats.
- 4. The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech. (LES).

5. Promotion Rule

A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year only if he fulfils the academic requirements of 34 credits up to III year I semester from all the examinations, whether or not the candidate takes the examinations.

6. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	% of marks to be secured	
First Class with Distinction	70% and above	From the aggregate
First Class	Below 70 but not less than 60%	marks
Second Class	Below 60% but not less than 50%	secured from 216 Credits.
Pass Class	Below 50% but not less than 40%	

The marks obtained in the internal evaluation and the end semester examination shall be shown separately in the marks memorandum.

7. All the other regulations as applicable to **B. Tech. 4-year degree course** (Regular) will hold good for **B. Tech.** (Lateral Entry Scheme).

MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

	Nature of Malpractices/ Improper conduct	Punishment
	If the candidate:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the

2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	examination hall and cancellation of the performance in that subject and all other subjects the candidate has already
3.	Impersonates any other candidate in connection with the examination.	

4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	
6.	Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or	college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the

	any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	examination hall and cancellation of performance in
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work

		and shall not be permitted for the remaining examinations of the subjects of that semester/ year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	examination hall and
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/ year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical

to the University for further action to award suitable punishment.			If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	
--	--	--	---	--

Malpractices identified by squad or special invigilators

- 1. Punishments to the candidates as per the above guidelines.
- 2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
 - (i) A show cause notice shall be issued to the college.
 - (ii) Impose a suitable fine on the college.
 - (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD.

B. TECH. COMPUTER SCIENCE AND ENGINEERING

I YEAR

Code	Subject	L	T/P/D	С
A10001	English	2	-	4
A10002	Mathematics – I	3	1	6
A10003	Mathematical Methods	3	-	6
A10004	Engineering Physics	3	-	6
A10005	Engineering Chemistry	3	-	6
A10501	Computer Programming	3	-	6
A10301	Engineering Drawing	2	3	6
A10581	Computer Programming Lab.	-	3	4
A10081	Engineering Physics / Engineering Chemistry Lab.	-	3	4
A10083	English Language Communication Skills Lab.	-	3	4
A10082	IT Workshop / Engineering Workshop	-	3	4
	Total	19	16	56

II YEAR I SEMESTER

Code	Subject	L	T/P/D	С
A30008	Probability and Statistics	4	-	4
A30504	Mathematical Foundations of Computer Science	4	-	4
A30502	Data Structures	4	-	4
A30401	Digital Logic Design	4	-	4
A30404	Electronic Devices and Circuits	4	-	4
A30202	Basic Electrical Engineering	4	-	4
A30282	Electrical and Electronics Lab	-	3	2
A30582	Data Structures Lab	-	3	2
	Total	24	6	28

II YEAR II SEMESTER

Code	Subject	L	T/P/D	С
A40506	Computer Organization	4	-	4
A40507	Database Management Systems	4	-	4
A40503	Java Programming	4	-	4
A40009	Environmental studies	4	-	4
A40509	Formal Languages and Automata Theory	4	-	4
A40508	Design and Analysis of Algorithms	4	-	4
A40585	Java Programming Lab	-	3	2
A40584	Database Management Systems Lab	-	3	2
	Total	24	6	28

III YEAR I SEMESTER

Code	Subject	L	T/P/D	С
A50511	Principles of Programming Languages	4	-	4
	OPEN ELECTIVE	4	-	4
A50018	Human Values and Professional Ethics			
A50017	Intellectual Property Rights			
A50117	Disaster Management			
A50518	Software Engineering	4	-	4
A50514	Compiler Design	4	-	4
A50510	Operating Systems	4	-	4
A50515	Computer Networks	4	-	4
A50589	Operating Systems Lab	-	3	2
A50587	Compiler Design Lab	-	3	2
	Total	24	6	28

III YEAR II SEMESTER

Code	Subject	L	T/P/D	С
A60521	Distributed Systems	4	-	4
A60522	Information Security	4	-	4
A60524	Object Oriented Analysis and Design	4	-	4
A60525	Software Testing Methodologies	4	-	4
A60010	Managerial Economics and Financial Analysis	4	-	4
A60512	Web Technologies	4	-	4
A60591	Case Tools and Web Technologies Lab	-	3	2
A60086	Advanced Communication Skills Lab	-	3	2
	Total	24	6	28

IV YEAR I SEMESTER

Code	Subject	L	T/P/D	С
A70511	Linux Programming	4	-	4
A70530	Design Patterns	4	-	4
A70520	Data Warehousing and Data Mining	4	-	4
A70519	Cloud Computing	4	-	4
A70540 A70532 A70536 A70529 A70352	ELECTIVE – I Software Project Management Image processing and Pattern Recognition Mobile Computing Computer Graphics Operations Research	4	-	4
A70534 A70539 A70533 A70526 A70628	ELECTIVE – II Machine Learning Soft Computing Information Retrieval Systems Artificial Intelligence Computer Forensics	4	-	4
A70596	Linux Programming Lab	-	3	2
A70595	Data Warehousing and Mining Lab	-	3	2
	Total	24	6	28

IV YEAR II SEMESTER

Code	Subject	L	T/P/D	С
A80014	Management Science	4	-	4
	ELECTIVE III	4	-	4
A80551	Web Services			
A80538	Semantic Web and Social Networks			
A80537	Scripting Languages			
A80547	Multimedia & Rich Internet Applications			
	ELECTIVE – IV	4	-	4
A80542	Ad hoc and Sensor Networks			
A80550	Storage Area Networks			
A80543	Database Security			
A80439	Embedded Systems			
A80087	Industry Oriented Mini Project	-	-	2
A80089	Seminar	-	6	2
A80088	Project Work	-	15	10
A80090	Comprehensive Viva	-	-	2
	Total	12	21	28

 Note: All End Examinations (Theory and Practical) are of three hours duration.

 T-Tutorial
 L – Theory
 P – Practical
 D-Drawing
 C – Credits

COMPUTER SCIENCE AND ENGINEERING 2013-14 21 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ear B.Tech. CSE-I Sem	L	T/P/D	С	
	2	-/-/-	4	

(A10001) ENGLISH

Introduction:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competencies of Engineering students. The prescribed books and the exercises are meant to serve broadly as students' handbooks.

In the English classes, the focus should be on the skills of reading, writing, listening and speaking and for this the teachers should use the text prescribed for detailed study. For example, the students should be encouraged to read the texts/selected paragraphs silently. The teachers can ask comprehension questions to stimulate discussion and based on the discussions students can be made to write short paragraphs/essays etc.

The text for non-detailed study is for extensive reading/reading for pleasure. Hence, it is suggested that they read it on their own the topics selected for discussion in the class. The time should be utilized for working out the exercises given after each section, as also for supplementing the exercises with authentic materials of a similar kind for example, from newspaper articles, advertisements, promotional material etc.. However, the stress in this syllabus is on skill development, fostering ideas and practice of language skills.

Objectives:

- To improve the language proficiency of the students in English with emphasis on LSRW skills.
- To equip the students to study academic subjects more effectively using the theoretical and practical components of the English syllabus.
- To develop the study skills and communication skills in formal and informal situations.

SYLLABUS:

Listening Skills:

Objectives

- 1. To enable students to develop their listening skill so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation.
- 2. To equip students with necessary training in listening so that they

can comprehend the speech of people of different backgrounds and regions.

Students should be given practice in listening to the sounds of the language to be able to recognise them, to distinguish between them to mark stress and recognise and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills:

Objectives

- 1. To make students aware of the role of speaking in English and its contribution to their success.
- 2. To enable students to express themselves fluently and appropriately in social and professional contexts.
- Oral practice
- Describing objects/situations/people
- Role play Individual/Group activities (Using exercises from the five units of the prescribed text: Skills Annexe -Functional English for Success)
- Just A Minute(JAM) Sessions.

Reading Skills:

Objectives

- 1. To develop an awareness in the students about the significance of silent reading and comprehension.
- 2. To develop the ability of students to guess the meanings of words from context and grasp the overall message of the text, draw inferences etc.
- Skimming the text
- Understanding the gist of an argument
- Identifying the topic sentence
- Inferring lexical and contextual meaning
- Understanding discourse features
- Scanning
- Recognizing coherence/sequencing of sentences

NOTE : The students will be trained in reading skills using the prescribed text for detailed study.

They will be examined in reading and answering questions using 'unseen' passages which may be taken from authentic texts, such as magazines/ newspaper articles.

Writing Skills :

Objectives

- 1. To develop an awareness in the students about writing as an exact and formal skill.
- 2. To equip them with the components of different forms of writing, beginning with the lower order ones.
- Writing sentences
- Use of appropriate vocabulary
- Paragraph writing
- Coherence and cohesiveness
- Narration / description
- Note Making
- Formal and informal letter writing
- Describing graphs using expressions of comparison

TEXTBOOKS PRESCRIBED:

In order to improve the proficiency of the student in the acquisition of the four skills mentioned above, the following texts and course content, divided into Five Units, are prescribed:

For Detailed study: First Textbook: "Skills Annexe -Functional English for Success", Published by Orient Black Swan, Hyderabad

For Non-detailed study

- 1. **Second text book "Epitome of Wisdom"**, Published by Maruthi Publications, Guntur
 - The course content and study material is divided into Five Units.

Unit -I:

- 1. Chapter entitled 'Wit and Humour' from "Skills Annexe -Functional English for Success", Published by Orient Black Swan, Hyderabad
- 2. Chapter entitled 'Mokshagundam Visvesvaraya' from "Epitome of Wisdom", Published by Maruthi Publications, Hyderabad.
- L- Listening For Sounds, Stress and Intonation
- S- Greeting and Taking Leave, Introducing Oneself and Others (Formal and Informal Situations)
- R- Reading for Subject/ Theme

- W- Writing Paragraphs
- G- Types of Nouns and Pronouns
- V- Homonyms, homophones synonyms, antonyms

Unit –II

- 1. Chapter entitled "Cyber Age" from "Skills Annexe -Functional English for Success" Published by Orient Black Swan, Hyderabad.
- 2. Chapter entitled **'Three Days To See'** from **"Epitome of Wisdom"**, Published by Maruthi Publications, Hyderabad.
- L Listening for themes and facts
- S Apologizing, interrupting, requesting and making polite conversation
- R- for theme and gist
- W- Describing people, places, objects, events
- G- Verb forms
- V- noun, verb, adjective and adverb

Unit –III

- Chapter entitled 'Risk Management' from "Skills Annexe -Functional English for Success" Published by Orient Black Swan, Hyderabad
- 2. Chapter entitled 'Leela's Friend' by R.K. Narayan from "Epitome of Wisdom", Published by Maruthi Publications, Hyderabad
- L for main points and sub-points for note taking
- S giving instructions and directions; Speaking of hypothetical situations
- R reading for details
- W note-making, information transfer, punctuation
- G present tense
- V synonyms and antonyms

Unit –IV

- Chapter entitled 'Human Values and Professional Ethics' from "Skills Annexe -Functional English for Success" Published by Orient Black Swan, Hyderabad
- 2. Chapter entitled **'The Last Leaf'** from "**Epitome of Wisdom**", Published by Maruthi Publications, Hyderabad
- L Listening for specific details and information
- S- narrating, expressing opinions and telephone interactions
- R Reading for specific details and information
- W- Writing formal letters and CVs

- G- Past and future tenses
- V- Vocabulary idioms and Phrasal verbs
- Unit –V
- Chapter entitled 'Sports and Health' from "Skills Annexe -Functional English for Success" Published by Orient Black Swan, Hyderabad
- 2. Chapter entitled **'The Convocation Speech'** by N.R. Narayanmurthy' from **"Epitome of Wisdom"**, Published by Maruthi Publications, Hyderabad
- L- Critical Listening and Listening for speaker's tone/ attitude
- S- Group discussion and Making presentations
- R- Critical reading, reading for reference
- W- Project proposals; Technical reports, Project Reports and Research Papers
- G- Adjectives, prepositions and concord
- V- Collocations and Technical vocabulary

Using words appropriately

* Exercises from the texts not prescribed shall also be used for classroom tasks.

REFERENCES:

- 1. Contemporary English Grammar Structures and Composition by David Green, MacMillan Publishers, New Delhi. 2010.
- 2. Innovate with English: A Course in English for Engineering Students, edited by T Samson, Foundation Books.
- 3. English Grammar Practice, Raj N Bakshi, Orient Longman.
- 4. Technical Communication by Daniel Riordan. 2011. Cengage Publications. New Delhi.
- 5. Effective English, edited by E Suresh Kumar, A RamaKrishna Rao, P Sreehari, Published by Pearson
- 6. Handbook of English Grammar& Usage, Mark Lester and Larry Beason, Tata Mc Graw –Hill.
- 7. Spoken English, R.K. Bansal & JB Harrison, Orient Longman.
- 8. Technical Communication, Meenakshi Raman, Oxford University Press
- 9. Objective English Edgar Thorpe & Showick Thorpe, Pearson Education
- 10. Grammar Games, Renuvolcuri Mario, Cambridge University Press.

- 11. Murphy's English Grammar with CD, Murphy, Cambridge University Press.
- 12. Everyday Dialogues in English, Robert J. Dixson, Prentice Hall India Pvt Ltd.,
- 13. ABC of Common Errors Nigel D Turton, Mac Millan Publishers.
- 14. Basic Vocabulary Edgar Thorpe & Showick Thorpe, Pearson Education
- 15. Effective Technical Communication, M Ashraf Rizvi, Tata Mc Graw Hill.
- 16. An Interactive Grammar of Modern English, Shivendra K. Verma and Hemlatha Nagarajan , Frank Bros & CO
- 17. A Communicative Grammar of English, Geoffrey Leech, Jan Svartvik, Pearson Education
- 18. Enrich your English, Thakur K B P Sinha, Vijay Nicole Imprints Pvt Ltd.,
- 19. A Grammar Book for You And I, C. Edward Good, MacMillan Publishers **Outcomes:**
- Usage of English Language, written and spoken.
- Enrichment of comprehension and fluency
- Gaining confidence in using language in verbal situations.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE	L	T/P/D	С
	3	1/-/-	6

(A10002) MATHEMATICS -I

Objectives: To learn

- The types of Matrices and their properties
- Concept of rank of a matrix and applying the concept of rank to know the consistency of linear equations and to find all possible solutions, if exist.
- The concept of eigenvalues and eigenvectors of a matrix is to reduce a quadratic form into a canonical form through a linear transformation.
- The mean value theorems and to understand the concepts geometrically.
- The functions of several variables and optimization of these functions.
- The evaluation of improper integrals, Beta and Gamma functions.
- Multiple integration and its applications.
- Methods of solving the differential equations of 1st and higher order
- The applications of the differential equations to Newton's law of cooling, Natural growth and decay, Bending of beams etc.
- The definition of integral transforms and Laplace Transform.
- Properties of Laplace transform.
- Inverse Laplace Transform.
- Convolution theorem.
- Solution of Differential equations using Laplace transform.

UNIT-I

Theory of Matrices: Real matrices – Symmetric, skew – symmetric, orthogonal. Complex matrices: Hermitian, Skew-Hermitian and Unitary Matrices. Idempotent matrix, Elementary row and column transformations-Elementary matrix, Finding rank of a matrix by reducing to Echelon and normal forms. Finding the inverse of a non-singular square matrix using row/ column transformations (Gauss- Jordan method). Consistency of system of linear equations (homogeneous and non- homogeneous) using the rank of a matrix. Solving m x n and n x n linear system of equations by Gauss elimination.

Cayley-Hamilton Theorem (without proof) – Verification. Finding inverse of a matrix and powers of a matrix by Cayley-Hamilton theorem, Linear dependence and Independence of Vectors. Linear Transformation – Orthogonal Transformation. Eigen values and eigen vectors of a matrix. Properties of eigen values and eigen vectors of real and complex matrices. Finding linearly independent eigen vectors of a matrix when the eigen values of the matrix are repeated.

Diagonalization of matrix – Quadratic forms up to three variables. Rank – Positive definite, negative definite, semi definite, index, signature of quadratic forms. Reduction of a quadratic form to canonical form.

UNIT – II

Differential calculus methods: Rolle's Mean value Theorem – Lagrange's Mean Value Theorem – Cauchy's mean value Theorem – (all theorems without proof but with geometrical interpretations), verification of the Theorems and testing the applicability of these theorem to the given function.

Functions of several variables: Functional dependence- Jacobian- Maxima and Minima of functions of two variables without constraints and with constraints-Method of Lagrange multipliers.

UNIT – III

Improper integration, Multiple integration & applications: Gamma and Beta Functions –Relation between them, their properties – evaluation of improper integrals using Gamma / Beta functions

Multiple integrals – double and triple integrals – change of order of integrationchange of variables (polar, cylindrical and spherical) Finding the area of a region using double integration and volume of a region using triple integration.

UNIT – IV

Differential equations and applications: Overview of differential equationsexact, linear and Bernoulli (NOT TO BE EXAMINED). Applications of first order differential equations – Newton's Law of cooling, Law of natural growth and decay, orthogonal trajectories.

Linear differential equations of second and higher order with constant

coefficients, Non-homogeneous term of the type $f(X) = e^{ax}$, Sin ax, Cos ax,

and x^n , $e^{ax} V(x)$, $x^n V(x)$, method of variation of parameters. Applications to bending of beams, Electrical circuits and simple harmonic motion.

UNIT – V

Laplace transform and its applications to Ordinary differential equations Definition of Integral transform, Domain of the function and Kernel for the Laplace transforms. Existence of Laplace transform. Laplace transform of standard functions, first shifting Theorem, Laplace transform of functions when they are multiplied or divided by "t". Laplace transforms of derivatives and integrals of functions. – Unit step function – second shifting theorem – Dirac's delta function, Periodic function – Inverse Laplace transforms of partial fractions(Heaviside method) Inverse Laplace transforms of functions when they are multiplied or divided by "s", Inverse Laplace Transforms of derivatives and integrals of functions, Convolution theorem -- Solving ordinary differential equations by Laplace transforms.

TEXT BOOKS:

- 1. Advanced engineering Mathematics by Kreyszig, John Wiley & Sons Publishers.
- 2. Higher Engineering Mathematics by B.S. Grewal, Khanna Publishers.

REFERENCES:

- Advanced Engineering Mathematics by R.K. Jain & S.R.K. Iyengar, 3rd edition, Narosa Publishing House, Delhi.
- 2. Engineering Mathematics I by T.K. V. Iyengar, B. Krishna Gandhi & Others, S. Chand.
- 3. Engineering Mathematics I by D. S. Chandrasekhar, Prison Books Pvt. Ltd.
- 4. Engineering Mathematics I by G. Shanker Rao & Others I.K. International Publications.
- 5. Advanced Engineering Mathematics with MATLAB, Dean G. Duffy, 3rd Edi, CRC Press Taylor & Francis Group.
- Mathematics for Engineers and Scientists, Alan Jeffrey, 6th Edi, 2013, Chapman & Hall/ CRC
- 7. Advanced Engineering Mathematics, Michael Greenberg, Second Edition, Pearson Education.

Outcome:

- After learning the contents of this Unit the student is able to write the matrix representation of a set of linear equations and to analyze solutions of system of equations.
- The student will be able to understand the methods of differential calculus to optimize single and multivariable functions.
- The student is able to evaluate the multiple integrals and can apply the concepts to find the Areas, Volumes, Moment of Inertia etc., of regions on a plane or in space.
- The student is able to identify the type of differential equation and uses the right method to solve the differential equation. Also able to apply the theory of differential equations to the real world problems.
- The student is able to solve certain differential equations using Laplace Transform. Also able to transform functions on time domain to frequency domain using Laplace transforms.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE	L	T/P/D	С
	3	-/-/-	6

(A10003) MATHEMATICAL METHODS

Objectives:

- The objective is to find the relation between the variables x and y out of the given data (x,y).
- This unit also aims to find such relationships which exactly pass through data or approximately satisfy the data under the condition of least sum of squares of errors.
- The aim of numerical methods is to provide systematic methods for solving problems in a numerical form using the given initial data.
- This topic deals with methods to find roots of an equation and solving a differential equation.
- The numerical methods are important because finding an analytical procedure to solve an equation may not be always available.
- In the diverse fields like electrical circuits, electronic communication, mechanical vibration and structural engineering, periodic functions naturally occur and hence their properties are very much required.
- Indeed, any periodic and non-periodic function can be best analyzed in one way by Fourier series and transforms methods.
- The unit aims at forming a partial differential equation (PDE) for a function with many variables and their solution methods. Two important methods for first order PDE's are learnt. While separation of variables technique is learnt for typical second order PDE's such as Wave, Heat and Laplace equations.
- In many Engineering fields the physical quantities involved are vectorvalued functions.
- Hence the unit aims at the basic properties of vector-valued functions and their applications to line integrals, surface integrals and volume integrals.

UNIT – I:

Interpolation and Curve fitting:

Interpolation: Introduction- Errors in Polynomial Interpolation – Finite differences- Forward Differences- Backward differences – Central differences – Symbolic relations and separation of symbols- Difference Equations – Differences of a polynomial-Newton's formulae for interpolation – Central difference interpolation Formulae – Gauss Central Difference Formulae –

Interpolation with unevenly spaced points-Lagrange's Interpolation formula. B. Spline interpolation – Cubic spline.

Curve fitting: Fitting a straight line –Second degree curve-exponential curvepower curve by method of least squares.

UNIT – II :

Numerical techniques:

Solution of Algebraic and Transcendental Equations and Linear system of equations: Introduction – Graphical interpretation of solution of equations .The Bisection Method – The Method of False Position – The Iteration Method – Newton-Raphson Method .

Solving system of non-homogeneous equations by L-U Decomposition method(Crout's Method)Jacobi's and Gauss-Seidel Iteration method

Numerical Differentiation, Integration, and Numerical solutions of First order differential equations: Numerical differentiation, Numerical integration - Trapezoidal rule, Simpson's 1/3rd and 3/8 Rule, Generalized Quadrature.

Numerical solution of Ordinary Differential equations: Solution by Taylor's series method –Picard's Method of successive Approximation- single step methods-Euler's Method-Euler's modified method, Runge-Kutta Methods, Predictor –corrector methods(Milne's Method and Adams-Bashforth methods only).

UNIT – III:

Fourier series and Fourier Transforms: Definition of periodic function.

Fourier expansion of periodic functions in a given interval of length 2π Determination of Fourier coefficients – Fourier series of even and odd functions – Fourier series in an arbitrary interval – even and odd periodic continuation – Half-range Fourier sine and cosine expansions.

Fourier integral theorem - Fourier sine and cosine integrals. Fourier transforms – Fourier sine and cosine transforms – properties – inverse transforms – Finite Fourier transforms.

UNIT-IV:

Partial differential equations : Introduction and Formation of partial differential equation by elimination of arbitrary constants and arbitrary functions, solutions of first order linear (Lagrange) equation and non-linear equations (Charpit's method), Method of separation of variables for second order equations –Applications of Partial differential equations-Two dimensional wave equation., Heat equation.

UNIT – V

Vector Calculus: Vector Calculus: Scalar point function and vector point

function, Gradient- Divergence- Curl and their related properties, - Laplacian operator, Line integral – work done – Surface integrals -Volume integral. Green's Theorem, Stoke's theorem and Gauss's Divergence Theorems (Statement & their Verification). Solenoidal and irrotational vectors, Finding Potential function.

TEXT BOOKS:

- 1. Advanced Engineering Mathematics by Kreyszig, John Wiley & Sons.
- 2. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers.

REFERENCES:

- 1. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi & Others, S. Chand.
- 2. Introductory Methods by Numerical Analysis by S.S. Sastry, PHI Learning Pvt. Ltd.
- 3. Mathematical Methods by G.Shankar Rao, I.K. International Publications, N.Delhi
- 4. Mathematical Methods by V. Ravindranath, Etl, Himalaya Publications.
- Advanced Engineering Mathematics with MATLAB, Dean G. Duffy, 3rd Edi, 2013, CRC Press Taylor & Francis Group.
- Mathematics for Engineers and Scientists, Alan Jeffrey, 6th Edi, 2013, Chapman & Hall/ CRC
- 7. Advanced Engineering Mathematics, Michael Greenberg, Second Edition. Pearson Education.

Outcomes:

From a given discrete data, one will be able to predict the value of the data at an intermediate point and by curve fitting, can find the most appropriate formula for a guessed relation of the data variables. This method of analysis data helps engineers to understand the system for better interpretation and decision making

- After studying this unit one will be able to find a root of a given equation and will be able to find a numerical solution for a given differential equation.
- Helps in describing the system by an ODE, if possible. Also, suggests to find the solution as a first approximation.
- One will be able to find the expansion of a given function by Fourier series and Fourier Transform of the function.
- Helps in phase transformation, Phase change and attenuation of coefficients in acoustics.

- After studying this unit, one will be able to find a corresponding Partial Differential Equation for an unknown function with many independent variables and to find their solution.
- Most of the problems in physical and engineering applications, problems are highly non-linear and hence expressing them as PDEs'. Hence understanding the nature of the equation and finding a suitable solution is very much essential.
- After studying this unit, one will be able to evaluate multiple integrals (line, surface, volume integrals) and convert line integrals to area integrals and surface integrals to volume integrals.
- It is an essential requirement for an engineer to understand the behavior of the physical system.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE	L	T/P/D	С
	3	-/-/-	6

(A10004) ENGINEERING PHYSICS

Objectives:

It gives

- to the students basic understanding of bonding in solids, crystal structures and techniques to characterize crystals.
- to understand the behavior of electron in a solid and thereby one can determine the conductivity and specific heat values of the solids.
- to study applications in Engineering like memory devices, transformer core and Electromagnetic machinery.
- to help the student to design powerful light sources for various Engineering Applications and also enable them to develop communication systems using Fiber Technology.
- to understand the working of Electronic devices, how to design acoustic proof halls and understand the behavior of the materials at Nano scale.

UNIT-I

Crystallography: Ionic Bond, Covalent Bond, Metallic Bond, Hydrogen Bond, Vander-Waal's Bond, Calculation of Cohesive Energy of diatomic molecule-Space Lattice, Unit Cell, Lattice Parameters, Crystal Systems, Bravais Lattices, Atomic Radius, Co-ordination Number and Packing Factor of SC, BCC, FCC, Miller Indices, Crystal Planes and Directions, Inter Planar Spacing of Orthogonal Crystal Systems, Structure of Diamond and NaCl.

X-ray Diffraction & Defects in Crystals: Bragg's Law, X-Ray diffraction methods: Laue Method, Powder Method: Point Defects: Vacancies, Substitutional, Interstitial, Frenkel and Schottky Defects, line defects (Qualitative) & Burger's Vector.

UNIT-II

Principles of Quantum Mechanics: Waves and Particles, de Broglie Hypothesis, Matter Waves, Davisson and Germer' Experiment, Heisenberg's Uncertainty Principle, Schrödinger's Time Independent Wave Equation - Physical Significance of the Wave Function – Infinite square well potential, extension to three dimensions

Elements of Statistical Mechanics & Electron theory of Solids: Phase space, Ensembles, Micro Canonical, Canonical and Grand Canonical Ensembles - Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Statistics (Qualitative Treatment), Concept of Electron Gas, , Density of States, Fermi

Energy- Electron in a periodic Potential, Bloch Theorem, Kronig-Penny Model (Qualitative Treatment), E-K curve, Origin of Energy Band Formation in Solids, Concept of Effective Mass of an Electron, Classification of Materials into Conductors, Semi Conductors & Insulators.

UNIT-III

Dielectric Properties: Electric Dipole, Dipole Moment, Dielectric Constant, Polarizability, Electric Susceptibility, Displacement Vector, Electronic, Ionic and Orientation Polarizations and Calculation of Polarizabilities: Ionic and Electronic - Internal Fields in Solids, Clausius - Mossotti Equation, Piezo electricity and Ferro- electricity.

Magnetic Properties & Superconducting Properties: Permeability, Field Intensity, Magnetic Field Induction, Magnetization, Magnetic Susceptibility, Origin of Magnetic Moment, Bohr Magneton, Classification of Dia, Para and Ferro Magnetic Materials on the basis of Magnetic Moment, Domain Theory of Ferro Magnetism on the basis of Hysteresis Curve, Soft and Hard Magnetic Materials, Properties of Anti-Ferro and Ferri Magnetic Materials and their Applications, Superconductivity, Meissner Effect, Effect of Magnetic field, Type-I & Type-II Superconductors, Applications of Superconductors.

UNIT-IV

Optics: Interference-Interference in thin films (Reflected light), Newton rings experiment- Fraunhofer diffraction due to single slit, N-slits, Diffraction grating experiment, Double refraction-construction and working of Nicol's Prism

Lasers & Fiber Optics: Characteristics of Lasers, Spontaneous and Stimulated Emission of Radiation, Einstein's Coefficients and Relation between them, Population Inversion, Lasing Action, Ruby Laser, Helium-Neon Laser, Semiconductor Diode Laser, Applications of Lasers- Principle of Optical Fiber, Construction of fiber, Acceptance Angle and Acceptance Cone, Numerical Aperture, Types of Optical Fibers: Step Index and Graded Index Fibers, Attenuation in Optical Fibers, Application of Optical Fiber in communication systems.

UNIT-V:

Semiconductor Physics: Fermi Level in Intrinsic and Extrinsic Semiconductors, Calculation of carrier concentration in Intrinsic &, Extrinsic Semiconductors, Direct and Indirect Band gap semiconductors, Hall Effect-Formation of PN Junction, Open Circuit PN Junction, Energy Diagram of PN Diode, Diode Equation, I-V Characteristics of PN Junction diode, Solar cell, LED & Photo Diodes. Acoustics of Buildings & Acoustic Quieting: Reverberation and Time of Reverberation, Sabine's Formula for Reverberation Time, Measurement of Absorption Coefficient of a Material, factors affecting the Architectural Acoustics and their Remedies

Nanotechnology: Origin of Nanotechnology, Nano Scale, Surface to Volume

Ratio, Quantum Confinement, Bottom-up Fabrication: Sol-gel, Top-down Fabrication: Chemical Vapour Deposition, Characterization by TEM.

TEXT BOOKS:

- 1. Engineering Physics,K. Malik, A. K. Singh, Tata Mc Graw Hill Book Publishers.
- 2. Engineering Physics, V. Rajendran, Tata Mc Graw Hill Book Publishers.

REFERENCES:

- 1. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl Walker by John Wiley & Sons.
- Sears and Zemansky's University Physics (10th Edition) by Hugh D. Young Roger A. Freedman, T. R. Sandin, A. Lewis FordAddison-Wesley Publishers.
- 3. Applied Physics for Engineers P. Madhusudana Rao (Academic Publishing company, 2013).
- 4. Solid State Physics M. Armugam (Anuradha Publications).
- Modern Physics R. Murugeshan & K. Siva Prasath S. Chand & Co. (for Statistical Mechanics).
- A Text Book of Engg Physics M. N. Avadhanulu & P. G. Khsirsagar– S. Chand & Co. (for acoustics).
- 7. Modern Physics by K. Vijaya Kumar, S. Chandralingam: S. Chand & Co.Ltd.
- 8. Nanotechnology M.Ratner & D. Ratner (Pearson Ed.).
- 9. Introduction to Solid State Physics C. Kittel (Wiley Eastern).
- 10. Solid State Physics A.J. Dekker (Macmillan).
- 11. Applied Physics Mani Naidu Pearson Education.

Outcomes:

- The student would be able to learn the fundamental concepts on behavior of crystalline solids.
- The knowledge on Fundamentals of Quantum Mechanics, Statistical Mechanics enables the student to apply to various systems like Communications Solar Cells, Photo Cells and so on.
- Design, Characterization and study of properties of materials help the student to prepare new materials for various Engineering applications.
- This course also helps the student exposed to non-destructive testing methods.
- Finally, Engineering Physics Course helps the student to develop problem solving skills and analytical skills.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE

L	T/P/D	С
3	-/-/-	6

(A10005) ENGINEERING CHEMISTRY

Objective:

An engineer is as someone who uses scientific, natural and physical principles to design something of use for people or other living creatures. Much of what any engineer does involves chemistry because everything in our environment has a molecular make up. Engineering requires the concepts of applied chemistry and the more chemistry an engineer understands, the more beneficial it is. In the future, global problems and issues will require an in-depth understanding of chemistry to have a global solution. This syllabus aims at bridging the concepts and theory of chemistry with examples from fields of practical application, thus reinforcing the connection between science and engineering. It deals with the basic principles of various branches of chemistry which are fundamental tools necessary for an accomplished engineer.

UNIT I:

Electrochemistry & Corrosion: Electro Chemistry – Conductance - Specific, Equivalent and Molar conductance and their Units; Applications of Conductance (Conductometric titrations). **EMF:** Galvanic Cells, types of Electrodes – (Calomel, Quinhydrone and glass electrodes); Nernst equation and its applications; concept of concentration cells, electro chemical series, Potentiometric titrations, determination of P^H using glass electrode-Numerical problems.

Batteries: Primary cells (dry cells) and secondary cells (lead-Acid cell, Ni-Cd cell, Lithium cells). Applications of batteries. **Fuel cells** – Hydrogen – Oxygen fuel cell; methanol – oxygen fuel cell; Advantages and Applications.

Corrosion and its control: Causes and effects of corrosion; Theories of corrosion – Chemical & Electrochemical corrosion; Types of corrosion (Galvanic, Water line, Pitting and Intergranular); Factors affecting rate of corrosion – Nature of metal and Nature of Environment – Corrosion control methods – Cathodic protection (sacrificial anodic and impressed current). Surface coatings: Metallic coatings & methods of application of metallic coatings - hot dipping (galvanization & tinning), Cementation, cladding, electroplating (copper plating) Electroless plating (Ni plating) - Organic coatings – Paints - constituents and their functions.

UNIT II:

Engineering Materials: Polymers: Types of Polymerization (Chain & Step growth). Plastics: Thermoplastic & Thermo setting resins; Compounding &

fabrication of plastics (Compression and injection moulding). Preparation, properties, engineering applications of PVC, Teflon and Bakelite. Fibers-Charcterstics of fibers - preparation, properties and uses of Nylon - 6,6 and Dacron - Fiber Reinforced Plastics (FRP) - applications. Rubbers - Natural rubber and its vulcanization. Elastomers - Buna-s, Butyl rubber and Thiokol rubber.

Conducting polymers: Polyacetylene, Polyaniline, Mechanism of Conduction, doping; applications of Conducting polymers. Bio-degradable Polymers- preparation and Applications of Poly vinyl acetate and Poly lactic acid - Cement: composition of Portland cement, setting & hardening of cement (reactions), Lubricants: Classification with examples- Characterstics of a good lubricant & mechanism of lubrication (thick film, thin film and extreme pressure) - properties of lubricants: viscosity, Cloud point, flash and fire points. Refractories: Classification, characteristics of a good refractory and applications.

Nanomaterials: Introduction, preparation by sol-gel & chemical vapour deposition methods. Applications of nanomaterials.

UNIT III:

Water and its Treatment: Hardness of Water: Causes of hardness, expression of hardness - units - types of hardness, estimation of temporary & permanent hardness of water by EDTA method - numerical problems. Boiler troubles - Scale & sludges, Priming and foaming, caustic enbrittlement and boiler corrosion; Treatment of boiler feed water - Internal treatment (Phosphate, Colloidal and calgon conditioning) - External treatment - Lime Soda process, Zeolite process and ion exchange process. Numerical Problems. Potable Water- Its Specifications - Steps involved in treatment of potable water - Disinfection of water by chlorination and ozonisation. Reverse osmosis & its significance.

Unit - IV :

Fuels & Combustion: Fuels - Classification - soild fuels : coal - analysis of coal - proximate and ultimate analysis and their significance. Liquid fuels - petroleum and its refining - cracking - types - fixed bed catalytic cracking. Knocking - octane and cetane rating, synthetic petrol, Bergius and Fischer-Tropsch's process: Gaseous fuels - constituents, characteristics and applications of natural gas, LPG and CNG. Analysis of flue gas by Orsat's apparatus - Numerical Problems.

Combustion – Definition, Calorific value of fuel – HCV, LCV; Determination of calorific value by Junker's gas calorimeter - theoretical calculation of Calorific value by Dulong's formula - Numerical problems on combustion. UNIT V:

Phase Rule & Surface Chemistry : Phase Rule: Definition of terms: Phase,

component, degree of freedom, phase rule equation. Phase diagrams – one component system- water system. Two component system Lead- Silver, cooling curves, heat treatment based on iron-carbon phase diagram - hardening, annealing and normalization.

Surface Chemistry: Adsorption – Types of Adsorption, Isotherms – Freundlich and Langmuir adsorption isotherm, applications of adsorption; **Colloids:** Classification of Colloids; Electrical & optical properties, micelles, applications of colloids in industry.

TEXT BOOKS:

- 1. Engineering Chemistry by R.P. Mani,K.N. Mishra, B. Rama Devi / CENGAGE learning.
- 2. Engineering Chemistry by P.C Jain & Monica Jain, Dhanpatrai Publishing Company (2008).

REFERENCE BOOKS

- 1. Engineering Chemistry by B. Siva Shankar Mc.Graw Hill Publishing Company Limited, New Delhi (2006)
- 2. Engineering Chemistry J.C. Kuriacase & J. Rajaram, Tata McGraw Hills Publishing Company Limited, New Delhi (2004).
- Text Book of Engineering Chemistry by S.S. Dara & Mukkati S. Chand & Co Publishers, New Delhi (2006).
- 4. Chemistry of Engineering Materials by CV Agarwal, C.P Murthy, A.Naidu, BS Publications.

Outcome:

- Students will demonstrate a depth of knowledge and apply the methods of inquiry in a discipline of their choosing, and they will demonstrate a breadth of knowledge across their choice of varied disciplines.
- Students will demonstrate the ability to access and interpret information, respond and adapt to changing situations, make complex decisions, solve problems, and evaluate actions.
- Students will demonstrate awareness and understanding of the skills necessary to live and work in a diverse engineering world.

COMPUTER SCIENCE AND ENGINEERING 2013-14 40 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE

T/P/D С -/-/-

6

L.

3

(A10501) COMPUTER PROGRAMMING

Objectives:

- To understand the various steps in Program development. •
- To understand the basic concepts in C Programming Language.
- To learn how to write modular and readable C Programs.
- To learn to write programs (using structured programming approach) in C to solve problems.
- To introduce the students to basic data structures such as lists, stacks and queues.
- To make the student understand simple sorting and searching methods.

UNIT - I

Introduction to Computers - Computer Systems, Computing Environments, Computer Languages, Creating and running programs, Program Development.

Introduction to the C Language – Background, C Programs, Identifiers, Types, Variables, Constants, Input / Output, Operators (Arithmetic, relational, logical, bitwise etc.), Expressions, Precedence and Associativity, Expression Evaluation, Type conversions, Statements- Selection Statements (making decisions) - if and switch statements, Repetition statements (loops)-while, for, do-while statements, Loop examples, other statements related to looping - break, continue, goto, Simple C Program examples.

UNIT - II

Functions-Designing Structured Programs, Functions, user defined functions, inter function communication, Standard functions, Scope, Storage classesauto, register, static, extern, scope rules, type qualifiers, recursion- recursive functions, Limitations of recursion, example C programs, Preprocessor commands.

Arrays – Concepts, using arrays in C, inter function communication, array applications, two - dimensional arrays, multidimensional arrays, C program examples.

UNIT - III

Pointers – Introduction (Basic Concepts), Pointers for inter function communication, pointers to pointers, compatibility, Pointer Applications-Arrays and Pointers, Pointer Arithmetic and arrays, Passing an array to a function, memory allocation functions, array of pointers, programming applications, pointers to void, pointers to functions.

Strings – Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion, C program examples.

UNIT - IV

Enumerated, Structure, and Union Types– The Type Definition (typedef), Enumerated types, Structures –Declaration, initialization, accessing structures, operations on structures, Complex structures, structures and functions, Passing structures through pointers, self referential structures, unions, bit fields, C programming examples, command –line arguments.

Input and Output – Concept of a file, streams, text files and binary files, Differences between text and binary files, State of a file, Opening and Closing files, file input / output functions (standard library input / output functions for files), file status functions (error handling),Positioning functions, C program examples.

UNIT – V

Searching and Sorting – Sorting- selection sort, bubble sort, Searching-linear and binary search methods.

Lists- Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Push and Pop Operations, Queues- Enqueue and Dequeue operations.

TEXT BOOKS:

- 1. Computer Science: A Structured Programming Approach Using C, B.A.Forouzan and R.F. Gilberg, Third Edition, Cengage Learning.
- 2. Programming in C. P. Dey and M Ghosh , Oxford University Press.

REFERENCE BOOKS:

- 1. C& Data structures P. Padmanabham, Third Edition, B.S. Publications.
- 2. C for All, S. Thamarai Selvi, R.Murugesan, Anuradha Publications.
- 3. Problem Solving and Program Design in C, J.R. Hanly and E.B. Koffman, 7th Edition, Pearson education.
- 4. Programming in C, Ajay Mittal, Pearson.
- 5. Programming with C, B.Gottfried, 3rd edition, Schaum's outlines, TMH.
- 6. Problem solving with C, M.T.Somasekhara, PHI
- 7. Programming with C, R.S.Bickar, Universities Press.
- 8. Computer Programming & Data Structures, E.Balagurusamy, 4th edition, TMH.
- 9. Programming in C Stephen G. Kochan, III Edition, Pearson

Education.

- 10. The C Programming Language, B.W. Kernighan and Dennis M.Ritchie, PHI.
- 11. C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press.

Outcomes:

- Demonstrate the basic knowledge of computer hardware and software.
- Ability to apply solving and logical skills to programming in C language and also in other languages.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE

L	T/P/D	С
2	-/-/3	6

(A10301) ENGINEERING DRAWING

UNIT – I

Introduction to Engineering Drawing: Principles of Engineering Drawing/ Graphics – Various Drawing Instruments – Conventions in Drawing – Lettering practice – BIS Conventions.

Curves: Constructions of Curves used in Engineering Practice:

- a) Conic Sections including the Rectangular Hyperbola General method only.
- b) Cycloid, Epicycloid and Hypocycloid
- c) Involute.

Scales: Construction of different types of Scales, Plain, Diagonal, Vernier scale.

UNIT – II

Orthographic Projections in First Angle

Projection: Principles of Orthographic Projections – Conventions – First and Third Angle projections.

Projections of Points : including Points in all four quadrants.

Projections of Lines : Parallel, perpendicular, inclined to one plan and inclined to both planes. True length and true angle of a line. Traces of a line.

Projections of Planes: Plane parallel, perpendicular and inclined to one reference plane. Plane inclined to both the reference planes.

unit – III

Projections of Solids: Projections of regular solids, cube, prisms, pyramids, tetrahedran, cylinder and cone, axis inclined to both planes.

Sections and Sectional Views: Right Regular Solids – Prism, Cylinder, Pyramid, Cone – use of Auxiliary views.

UNIT – IV

Development of Surfaces: Development of Surfaces of Right, Regular Solids – Prisms, Cylinder, Pyramids, Cone and their parts. frustum of solids. **Intersection of Solids:-** Intersection of Cylinder Vs Cylinder, Cylinder Vs

Prism, Cylinder Vs Cone.

UNIT – V

Isometric Projections : Principles of Isometric Projection – Isometric Scale – Isometric Views– Conventions – Plane Figures, Simple and Compound

Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of parts with Spherical surface.

Transformation of Projections : Conversion of Isometric Views to Orthographic Views. Conversion of orthographic views to isometric views – simple objects.

Perspective Projections : Perspective View : Points, Lines and Plane Figures, Vanishing Point Methods (General Method only).

TEXT BOOKS

- 1. Engineering Drawing Basant, Agrawal, TMH
- 2. Engineering Drawing, N.D. Bhatt

REFERENCES:

- 1. Engineering Graphics. P I Varghese Tata McGraw Hill Education Pvt. Ltd.
- 2. Engineering drawing P.J. Shah .S.Chand Publishers.
- 3. Engineering Drawing- Johle/Tata Macgraw Hill Book Publishers.
- 4. Engineering Drawing M.B. Shah and B.C. Rana, Pearson.
- 5. Engineering Drawing by K.Venu Gopal & V.Prabu Raja New Age Publications.
- 6. Engineering Drawing by John. PHI Learning Publisher.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE

T/P/D C -/3/- 4

L.

(A10581) COMPUTER PROGRAMMING LAB

Objectives:

- To write programs in C to solve the problems.
- To implement linear data structures such as lists, stacks, queues.
- To implement simple searching and sorting methods.

Recommended Systems/Software Requirements:

- Intel based desktop PC
- ANSI C Compiler with Supporting Editors

Week I

a) Write a C program to find the sum of individual digits of a positive integer.

b) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.

c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

Week 2

- a) Write a C program to calculate the following Sum:
 - Sum= $1-x^2/2! +x^4/4!-x^6/6!+x^8/8!-x^{10}/10!$
- **b)** Write a C program to find the roots of a quadratic equation.

Week 3

a) The total distance travelled by vehicle in 't' seconds is given by distance s = ut+1/2at² where 'u' and 'a' are the initial velocity (m/sec.) and acceleration (m/sec²). Write C program to find the distance travelled at regular intervals of time given the values of 'u' and 'a'. The program should provide the flexibility to the user to select his own time intervals and repeat the calculations for different values of 'u' and 'a'.

b) Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)

Week 4

- a) Write C programs that use both recursive and non-recursive functions
 - i) To find the factorial of a given integer.

ii) To find the GCD (greatest common divisor) of two given integers.

Week 5

a) Write a C program to find the largest integer in a list of integers.

b) Write a C program that uses functions to perform the following:

- Addition of Two Matrices
- ii) Multiplication of Two Matrices

Week 6

a) Write a C program that uses functions to perform the following operations:

- To insert a sub-string in to a given main string from a given position.
- ii) To delete n Characters from a given position in a given string.

b) Write a C program to determine if the given string is a palindrome or not

Week 7

a) Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn't contain T.

b) Write a C program to count the lines, words and characters in a given text.

Week 8

a) Write a C program to generate Pascal's triangle.

b) Write a C program to construct a pyramid of numbers.

Week 9

Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:

1+x+x²+x³+.....+xⁿ

For example: if n is 3 and x is 5, then the program computes 1+5+25+125.

Print x, n, the sum

Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them too.

Week 10

a) 2's complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2's complement of 11100 is 00100. Write a C program to find the 2's complement of a binary number.

b) Write a C program to convert a Roman numeral to its decimal equivalent.

Week 11

Write a C program that uses functions to perform the following operations:

- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers
- (Note: represent complex number using a structure.)

Week 12

a) Write a C program which copies one file to another.

b) Write a C program to reverse the first n characters in a file.

(Note: The file name and n are specified on the command line.)

Week 13

a) Write a C program to display the contents of a file.

b) Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file)

Week 14

a) Write a C program that uses non recursive function to search for a Key value in a given list of integers using Linear search.

b) Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers using Binary search.

Week 15

a) Write a C program that implements the Selection sort method to sort a given array of integers in ascending order.

b) Write a C program that implements the Bubble sort method to sort a given list of names in ascending order.

Week 16

Write a C program that uses functions to perform the following operations:

i) Create a singly linked list of integer elements.

ii) Traverse the above list and display the elements.

Week 17

Write a C program that implements stack (its operations) using a singly linked list to display a given list of integers in reverse order. Ex. input: 10 23 4 6 output: 6 4 23 10

Week 18

Write a C program that implements Queue (its operations) using a singly linked list to display a given list of integers in the same order. Ex. input: 10

23 4 6 output: 10 23 4 6

Week 19

Write a C program to implement the linear regression algorithm.

Week 20

Write a C program to implement the polynomial regression algorithm.

Week 21

Write a C program to implement the Lagrange interpolation.

Week 22

Write C program to implement the Newton- Gregory forward interpolation.

Week 23

Write a C program to implement Trapezoidal method.

Week 24

Write a C program to implement Simpson method.

TEXT BOOKS:

- 1. C programming and Data Structures, P. Padmanabham, Third Edition, BS Publications
- 2. Computer Programming in C, V. Rajaraman, PHI Publishers.
- 3. C Programming, E.Balagurusamy, 3rd edition, TMH Publishers.
- 4. C Programming, M.V.S.S.N.Prasad, ACME Learning Pvt. Ltd.
- 5. C and Data Structures, N.B.Venkateswarlu and E.V.Prasad,S.Chand Publishers
- 6. Mastering C, K.R. Venugopal and S.R. Prasad, TMH Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE	L	T/P/D	С
	-	-/3/-	4

(A10081) ENGINEERING PHYSICS / ENGINEERING CHEMISTRY LAB

ENGINEERING PHYSICS LAB (Any TEN experiments compulsory)

Objectives

This course on Physics lab is designed with 13 experiments in an academic year. It is common to all branches of Engineering in B.Tech Ist year.

The objective of the course is that the student will have exposure to various experimental skills which is very essential for an Engineering student.

The experiments are selected from various areas of Physics like Physical Optics, Lasers, Fiber Optics, Sound, Mechanics, Electricity & Magnetism and Basic Electronics.

Also the student is exposed to various tools like Screw gauge, Vernier Callipers, Physics Balance , Spectrometer and Microscope.

- 1. Dispersive power of the material of a prism Spectrometer
- 2. Determination of wavelength of a source Diffraction Grating.
- 3. Newton's Rings Radius of curvature of plano convex lens.
- 4. Melde's experiment Transverse and longitudinal modes.
- 5. Time constant of an R-C circuit.
- 6. L-C-R circuit.
- 7. Magnetic field along the axis of current carrying coil Stewart and Gees method.
- 8. Study the characteristics of LED and LASER sources.
- 9. Bending losses of fibres & Evaluation of numerical aperture of a given fibre.
- 10. Energy gap of a material of p-n junction.
- 11. Torsional pendulum.
- 12. Wavelength of light -diffraction grating using laser.
- 13. Characteristics of a solar cell

LABORATORY MANUAL:

1. Laboratory Manual of Engineering Physics by Dr.Y.Aparna & Dr.K.Venkateswara Rao (V.G.S Publishers)

Outcomes

The student is expected to learn from this laboratory course the concept of error and its analysis. It also allows the student to develop experimental skills to design new experiments in Engineering.

With the exposure to these experiments the student can compare the theory and correlate with experiment.

ENGINEERING CHEMISTRY LAB

List of Experiments (Any 12 of the following)

Titrimetry:

- 1. Estimation of ferrous iron by dichrometry.
- 2. Estimation of hardness of water by EDTA method.

Mineral analysis:

- 3. Determination of percentage of copper in brass.
- 4. Estimation of manganese dioxide in pyrolusite.

Instrumental Methods:

Colorimetry:

- 5. Determination of ferrous iron in cement by colorimetric method
- 6. Estimation of copper by colorimetric method.

Conductometry:

- 7. Conductometric titration of strong acid vs strong base.
- 8. Conductometric titration of mixture of acids vs strong base.

Potentiometry:

- Titration of strong acid vs strong base by potentiometry.
- 10. Titration of weak acid vs strong base by potentiometry.

Physical properties:

- 11. Determination of viscosity of sample oil by redwood / oswald's viscometer.
- 12. Determination of Surface tension of lubricants.

Preparations:

- 13. Preparation of Aspirin
- 14. Preparation of Thiokol rubber

Adsorption:

15. Adsorption of acetic acid on charcoal.

TEXT BOOKS:

- 1. Practical Engineering Chemistry by K. Mukkanti, etal, B.S. Publications, Hyderabad.
- 2. Inorganic quantitative analysis, Vogel.

REFERENCE BOOKS:

- 1. Text Book of engineering chemistry by R. N. Goyal and Harrmendra Goel, Ane Books Private Ltd.,
- 2. A text book on experiments and calculation Engg. S.S. Dara.
- 3. Instrumental methods of chemical analysis, Chatwal, Anand, Himalaya Publications.

COMPUTER SCIENCE AND ENGINEERING 2013-14 52 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE

T/P/D С 4

-/3/-

L.

(A10083) ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

The Language Lab focuses on the production and practice of sounds of language and familiarises the students with the use of English in everyday situations and contexts.

Objectives

- æ To facilitate computer-aided multi-media instruction enabling individualized and independent language learning
- To sensitise the students to the nuances of English speech sounds, 2 word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in their 2 pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency in spoken English and neutralize mother æ tongue influence
- To train students to use language appropriately for interviews, group 2 discussion and public speaking

Syllabus: English Language Communication Skills Lab shall have two parts:

Computer Assisted Language Learning (CALL) Lab a.

Interactive Communication Skills (ICS) Lab b.

The following course content is prescribed for the English Language **Communication Skills Lab**

Exercise - I

CALL Lab: Introduction to Phonetics - Speech Sounds - Vowels and Consonants

ICS Lab: Ice-Breaking activity and JAM session

Articles, Prepositions, Word formation- Prefixes & Suffixes, Synonyms & Antonyms

Exercise - II

CALL Lab: Structure of Syllables - Past Tense Marker and Plural Marker -Weak Forms and Strong Forms - Consonant Clusters.

ICS Lab: Situational Dialogues - Role-Play- Expressions in Various Situations

 Self-introduction and Introducing Others – Greetings – Apologies – Requests – Social and Professional Etiquette - Telephone Etiquette.

Concord (Subject in agreement with verb) and Words often misspelt-confused/misused

Exercise - III

CALL Lab: Minimal Pairs- Word accent and Stress Shifts- Listening Comprehension.

ICS Lab: Descriptions- Narrations- Giving Directions and guidelines.

Sequence of Tenses, Question Tags and One word substitutes.

Exercise – IV

CALL Lab: Intonation and Common errors in Pronunciation.

ICS Lab: Extempore- Public Speaking

Active and Passive Voice, –Common Errors in English, Idioms and Phrases **Exercise – V**

CALL Lab: Neutralization of Mother Tongue Influence and Conversation Practice

ICS Lab: Information Transfer- Oral Presentation Skills

Reading Comprehension and Job Application with Resume preparation.

Minimum Requirement of infra structural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:

The Computer aided Language Lab for 40 students with 40 systems, one master console, LAN facility and English language software for self- study by learners.

System Requirement (Hardware component):

Computer network with Lan with minimum 60 multimedia systems with the following specifications:

- i) P IV Processor
 - a) Speed 2.8 GHZ
 - b) RAM 512 MB Minimum
 - c) Hard Disk 80 GB
- ii) Headphones of High quality
- 2. Interactive Communication Skills (ICS) Lab :

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public Address System,

a T. V., a digital stereo -audio & video system and camcorder etc.

Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems):

- 1. Suresh Kumar, E. & Sreehari, P. 2009. *A Handbook for English Language Laboratories*. New Delhi: Foundation
- Speaking English Effectively 2nd Edition by Krishna Mohan and N. P. Singh, 2011. Macmillan Publishers India Ltd. Delhi.
- 3. Sasi Kumar, V & Dhamija, P.V. *How to Prepare for Group Discussion and Interviews.* Tata McGraw Hill
- 4. Hancock, M. 2009. *English Pronunciation in Use. Intermediate.* Cambridge: CUP
- Spoken English: A Manual of Speech and Phonetics by R. K. Bansal & J. B. Harrison. 2013. Orient Blackswan. Hyderabad.
- 6. Hewings, M. 2009. *English Pronunciation in Use. Advanced.* Cambridge: CUP
- 7. Marks, J. 2009. *English Pronunciation in Use. Elementary.* Cambridge: CUP
- 8. Nambiar, K.C. 2011. *Speaking Accurately. A Course in International Communication.* New Delhi : Foundation
- 9. Soundararaj, Francis. 2012. Basics of Communication in English. New Delhi: Macmillan
- 10. Spoken English (CIEFL) in 3 volumes with 6 cassettes, OUP.
- 11. English Pronouncing Dictionary Daniel Jones Current Edition with CD.
- **12.** A textbook of English Phonetics for Indian Students by T. Balasubramanian (Macmillan)
- Prescribed Lab Manual: A Manual entitled "English Language Communication Skills (ELCS) Lab Manual- cum- Work Book", published by Cengage Learning India Pvt. Ltd, New Delhi. 2013

DISTRIBUTION AND WEIGHTAGE OF MARKS

English Language Laboratory Practical Examination:

- The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.
- 2. For the Language lab sessions, there shall be a continuous evaluation

during the year for 25 sessional marks and 50 year-end Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The year- end Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.

Outcomes:

- Better Understanding of nuances of language through audio- visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking with clarity and confidence thereby enhancing employability skills of the students

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. CSE

L T/P/D C

- -/3/-

(A10082) IT WORKSHOP / ENGINEERING WORKSHOP

Objectives:

The IT Workshop for engineers is a training lab course spread over 54 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel and Power Point.

PC Hardware introduces the students to a personal computer and its basic peripherals, the process of assembling a personal computer, installation of system software like MS Windows, Linux and the required device drivers. In addition hardware and software level troubleshooting process, tips and tricks would be covered. The students should work on working PC to disassemble and assemble to working condition and install Windows and Linux on the same PC. Students are suggested to work similar tasks in the Laptop scenario wherever possible.

Internet & World Wide Web module introduces the different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet. Usage of web browsers, email, newsgroups and discussion forums would be covered. In addition, awareness of cyber hygiene, i.e., protecting the personal computer from getting infected with the viruses, worms and other cyber attacks would be introduced.

Productivity tools module would enable the students in crafting professional word documents, excel spread sheets and power point presentations using the Microsoft suite of office tools and LaTeX. (Recommended to use Microsoft office 2007 in place of MS Office 2003)

PC Hardware

Week 1 – Task 1 : Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Week 2 – Task 2 : Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Week 3 – Task 3 : Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Week 4 – Task 4 : Every student should install Linux on the computer. This

computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Week 5 – Task 5: Hardware Troubleshooting: Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva

Week 6 – Task 6 : Software Troubleshooting : Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Internet & World Wide Web

Week 7 - Task 1 : Orientation & Connectivity Boot Camp : Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Week 8 - Task 2 : Web Browsers, Surfing the Web : Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Week 9 - Task 3 : Search Engines & Netiquette : Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Week 10 - Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to first install antivirus software, configure their personal firewall and windows update on their computer. Then they need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

Week 11- Task 5: Develop your home page using HTML Consisting of your photo, name, address and education details as a table and your skill set as a list.

Productivity tools

LaTeX and Word

Week 12 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word:

Importance of LaTeX and MS office 2007/ equivalent (FOSS) tool Word as word Processors, Details of the three tasks and features that would be covered in each, using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter.

Task 1 : Using LaTeX and Word to create project certificate. Features to be covered:-Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Week 13 - Task 2: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Week 14 - Task 3 : Creating a Newsletter : Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Week 15 - Excel Orientation: The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the two tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered:- Gridlines, Format Cells, Summation, auto fill, Formatting Text

Week 16 - Task 2 : Calculating GPA - .Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP, Sorting, Conditional formatting

LaTeX and MS/equivalent (FOSS) tool Power Point

Week 17 - Task1: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and Power point. Students will be given model power point presentation which needs to be replicated (exactly how it's asked).

Week 18- Task 2: Second week helps students in making their presentations interactive. Topic covered during this week includes: Hyperlinks, Inserting – Images, Clip Art, Audio, Video, Objects, Tables and Charts

Week 19 - Task 3: Concentrating on the in and out of Microsoft power point and presentations in LaTeX. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes: - Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), Inserting – Background, textures, Design Templates, Hidden slides.

REFERENCE BOOKS:

- 1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 2. LaTeX Companion Leslie Lamport, PHI/Pearson.
- 3. Introduction to Computers, Peter Norton, 6/e Mc Graw Hill Publishers.
- 4. Upgrading and Repairing, PC's 18th e, Scott Muller QUE, Pearson Education
- 5. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
- IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. – CISCO Press, Pearson Education.
- 7. PC Hardware and A+Handbook Kate J. Chase PHI (Microsoft)

Outcomes:

- Apply knowledge for computer assembling and software installation.
- Ability how to solve the trouble shooting problems.
- Apply the tools for preparation of PPT, Documentation and budget sheet etc.

ENGINEERING WORKSHOP

1. TRADES FOR EXERCISES:

At least two exercises from each trade:

- 1. Carpentry
- 2. Fitting
- 3. Tin-Smithy and Development of jobs carried out and soldering.
- 4. Black Smithy
- 5. House-wiring
- 6. Foundry
- 7. Welding
- 8. Power tools in construction, wood working, electrical engineering and mechanical Engineering.

2. TRADES FOR DEMONSTRATION & EXPOSURE:

- 1. Plumbing
- 2. Machine Shop
- 3. Metal Cutting (Water Plasma)

TEXT BOOK:

- 1. Work shop Manual P.Kannaiah/ K.L.Narayana/ Scitech Publishers.
- 2. Workshop Manual / Venkat Reddy/ BS Publications/Sixth Edition

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-I Sem

Tear D. Tech. CSE-I Sein	L .		C
	4	-/-/-	4

.

T/D/D

~

(A30008) PROBABILITY AND STATISTICS

Objectives: To learn

- Understand a random variable that describes randomness or an uncertainty in certain realistic situation. It can be of either discrete or continuous type.
- In the discrete case, study of the binomial and the Poisson random variables and the Normal random variable for the continuous case predominantly describe important probability distributions. Important statistical properties for these random variables provide very good insight and are essential for industrial applications.
- Most of the random situations are described as functions of many single random variables. In this unit, the objective is to learn functions of many random variables through joint distributions.
- The types of sampling, Sampling distribution of means, Sampling distribution of variance, Estimations of statistical parameters, Testing of hypothesis of few unknown statistical parameters.
- The mechanism of queuing system ,The characteristics of queue,The mean arrival and service rates
- The expected queue length, The waiting line
- The random processes, The classification of random processes, Markov chain, Classification of states
- Stochastic matrix (transition probability matrix),Limiting probabilities, Applications of Markov chains

UNIT-I

Single Random variables and probability distributions: Random variables – Discrete and continuous. Probability distributions, mass function/ density function of a probability distribution. Mathematical Expectation, Moment about origin, Central moments Moment generating function of probability distribution.

Binomial, Poisson & normal distributions and their properties. Moment generating functions of the above three distributions, and hence finding the mean and variance.

UNIT-II

Multiple Random variables, Correlation & Regression: Joint probability distributions- Joint probability mass / density function, Marginal probability

mass / density functions, Covariance of two random variables, Correlation - Coefficient of correlation, The rank correlation.

Regression- Regression Coefficient, The lines of regression and multiple correlation & regression.

UNIT-III

Sampling Distributions and Testing of Hypothesis

Sampling: Definitions of population, sampling, statistic, parameter. Types of sampling, Expected values of Sample mean and varience, sampling distribution, Standard error, Sampling distribution of means and sampling distribution of varience.

Parameter estimations - likelihood estimate, interval estimations.

Testing of hypothesis: Null hypothesis, Alternate hypothesis, type I, & type II errors – critical region, confidence interval, Level of significance. One sided test, two sided test,

Large sample tests:

- Test of Equality of means of two samples equality of sample mean and population mean (cases of known varience & unknown varience, equal and unequal variances)
- (ii) Tests of significance of difference between sample S.D and population S.D.
- (iii) Tests of significance difference between sample proportion and population proportion&difference between two sample proportions.

Small sample tests:

Student t-distribution, its properties; Test of significance difference between sample mean and population mean; difference between means of two small samples

Snedecor's F- distribution and it's properties. Test of equality of two population variences

Chi-square distribution , it's properties, Chi-square test of goodness of fit UNIT-IV

Queuing Theory: Structure of a queuing system, Operating Characteristics of queuing system, Transient and steady states, Terminology of Queuing systems, Arrival and service processes- Pure Birth-Death process Deterministic queuing models- M/M/1 Model of infinite queue, M/M/1 model of finite queue .

UNIT-V

Stochastic processes: Introduction to Stochastic Processes – Classification of Random processes, Methods of description of random processes,

Stationary and non-stationary random process, Average values of single random process and two or more random processes. Markov process, Markov chain, classification of states – Examples of Markov Chains, Stochastic Matrix.

TEXT BOOKS:

- 1) Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers
- 2) Probability and Statistics for Engineers and Scientists by Sheldon M.Ross, Academic Press
- 3) Operations Research by S.D. Sarma,

REFERENCE BOOKS:

- 1. Mathematics for Engineers by K.B.Datta and M.A S.Srinivas, Cengage Publications
- 2. Probability and Statistics by T.K.V.lyengar & B.Krishna Gandhi Et
- Fundamentals of Mathematical Statistics by S C Gupta and V.K.Kapoor
- 4. Probability and Statistics for Engineers and Scientists by Jay I.Devore. **Outcomes:**
- Students would be able to identify distribution in certain realistic situation. It is mainly useful for circuit as well as non-circuit branches of engineering. Also able to differentiate among many random variable involved in the probability models. It is quite useful for all branches of engineering.
- The student would be able to calculate mean and proportions (small and large sample) and to make important decisions from few samples which are taken out of unmanageably huge populations .It is Mainly useful for non-circuit branches of engineering.
- The students would be able to find the expected queue length, the ideal time, the traffic intensity and the waiting time. These are very useful tools in many engineering and data management problems in the industry. It is useful for all branches of engineering.
- The student would able to understand about the random process, Markov process and Markov chains which are essentially models of many time dependent processes such as signals in communications, time series analysis, queuing systems. The student would be able to find the limiting probabilities and the probabilities in nth state. It is quite useful for all branches of engineering

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4
	-		

(A30504) MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Objectives:

- To explain with examples the basic terminology of functions, relations, and sets.
- To perform the operations associated with sets, functions, and relations.
- To relate practical examples to the appropriate set, function, or relation model, and interpret the associated operations and terminology in context.
- To describe the importance and limitations of predicate logic.
- To relate the ideas of mathematical induction to recursion and recursively defined structures.
- To use Graph Theory for solving problems.

UNIT-I

Mathematical Logic : Statements and notations, Connectives, Well formed formulas, Truth Tables, tautology, equivalence implication, Normal forms, Quantifiers, universal quantifiers. Predicates : Predicative logic, Free & Bound variables, Rules of inference, Consistency, proof of contradiction, Automatic Theorem Proving.

UNIT-II

Relations: Properties of Binary Relations, equivalence, transitive closure, compatibility and partial ordering relations, Lattices, Hasse diagram. Functions: Inverse Function Composition of functions, recursive Functions, Lattice and its Properties, Algebraic structures : Algebraic systems Examples and general properties, Semi groups and monads, groups sub groups' homomorphism, Isomorphism.

UNIT-III

Elementary Combinatorics: Basis of counting, Combinations & Permutations, with repetitions, Constrained repetitions, Binomial Coefficients, Binomial Multinomial theorems, the principles of Inclusion – Exclusion. Pigeon hole principles and its application.

UNIT-IV

Recurrence Relation : Generating Functions, Function of Sequences Calculating Coefficient of generating function, Recurrence relations, Solving recurrence relation by substitution and Generating funds. Characteristics

roots solution of In homogeneous Recurrence Relation.

UNIT-V

Graph Theory : Representation of Graph, DFS, BFS, Spanning Trees, planar Graphs. Graph Theory and Applications, Basic Concepts Isomorphism and Sub graphs, Multi graphs and Euler circuits, Hamiltonian graphs, Chromatic Numbers.

TEXT BOOKS :

- 1. Elements of DISCRETE MATHEMATICS- A computer Oriented Approach- C L Liu, D P Mohapatra. Third Edition, Tata McGraw Hill.
- 2. Discrete Mathematics for Computer Scientists & Mathematicians, J.L. Mott, A. Kandel, T.P. Baker, PHI.

REFERENCE BOOKS :

- 1. Discrete Mathematics and its Applications, Kenneth H. Rosen, Fifth Edition.TMH.
- 2. Discrete Mathematical structures Theory and application-Malik & Sen, Cengage.
- 3. Discrete Mathematics with Applications, Thomas Koshy, Elsevier.
- 4. Logic and Discrete Mathematics, Grass Man & Trembley, Pearson Education.

Outcomes:

- Ability to Illustrate by examples the basic terminology of functions, relations, and sets and demonstrate knowledge of their associated operations.
- Ability to Demonstrate in practical applications the use of basic counting principles of permutations, combinations, inclusion/exclusion principle and the pigeonhole methodology.
- Ability to represent and Apply Graph theory in solving computer science problems.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-I Sem					L	T/P/D	С	
					4	-/-/-	4	

(A30502) DATA STRUCTURES

Objectives:

- To understand the basic concepts such as Abstract Data Types, Linear and Non Linear Data structures.
- To understand the notations used to analyze the Performance of algorithms.
- To understand the behavior of data structures such as stacks, queues, trees, hash tables, search trees, Graphs and their representations.
- To choose the appropriate data structure for a specified application.
- To understand and analyze various searching and sorting algorithms.
- To write programs in C to solve problems using data structures such as arrays, linked lists, stacks, queues, trees, graphs, hash tables, search trees.

UNIT- I

Basic concepts- Algorithm Specification-Introduction, Recursive algorithms, Data Abstraction Performance analysis- time complexity and space complexity, Asymptotic Notation-Big O, Omega and Theta notations, Introduction to Linear and Non Linear data structures.

Singly Linked Lists-Operations-Insertion, Deletion, Concatenating singly linked lists, Circularly linked lists-Operations for Circularly linked lists, Doubly Linked Lists- Operations- Insertion, Deletion.

Representation of single, two dimensional arrays, sparse matrices-array and linked representations.

UNIT- II

Stack ADT, definition, operations, array and linked implementations in C, applications-infix to postfix conversion, Postfix expression evaluation, recursion implementation, Queue ADT, definition and operations ,array and linked Implementations in C, Circular queues-Insertion and deletion operations, Deque (Double ended queue)ADT, array and linked implementations in C.

UNIT- III

Trees – Terminology, Representation of Trees, Binary tree ADT, Properties of Binary Trees, Binary Tree Representations-array and linked representations, Binary Tree traversals, Threaded binary trees, Max Priority Queue ADT-implementation-Max Heap-Definition, Insertion into a Max Heap,

Deletion from a Max Heap.

Graphs – Introduction, Definition, Terminology, Graph ADT, Graph Representations- Adjacency matrix, Adjacency lists, Graph traversals- DFS and BFS.

UNIT- IV

Searching- Linear Search, Binary Search, Static Hashing-Introduction, hash tables, hash functions, Overflow Handling.

Sorting-Insertion Sort, Selection Sort, Radix Sort, Quick sort, Heap Sort, Comparison of Sorting methods.

UNIT- V

Search Trees-Binary Search Trees, Definition, Operations- Searching, Insertion and Deletion, AVL Trees-Definition and Examples, Insertion into an AVL Tree ,B-Trees, Definition, B-Tree of order m, operations-Insertion and Searching, Introduction to Red-Black and Splay Trees(Elementary treatment-only Definitions and Examples), Comparison of Search Trees.

Pattern matching algorithm- The Knuth-Morris-Pratt algorithm, Tries (examples only).

TEXT BOOKS:

- 1. Fundamentals of Data structures in C, 2nd Edition, E.Horowitz, S.Sahni and Susan Anderson-Freed, Universities Press.
- 2. Data structures A Programming Approach with C, D.S.Kushwaha and A.K.Misra, PHI.

REFERENCE BOOKS:

- 1. Data structures: A Pseudocode Approach with C, 2nd edition, R.F.Gilberg And B.A.Forouzan, Cengage Learning.
- 2. Data structures and Algorithm Analysis in C, 2nd edition, M.A.Weiss, Pearson.
- 3. Data Structures using C, A.M.Tanenbaum,Y. Langsam, M.J.Augenstein, Pearson.
- 4. Data structures and Program Design in C, 2nd edition, R.Kruse, C.L.Tondo and B.Leung, Pearson.
- 5. Data Structures and Algorithms made easy in JAVA, 2nd Edition, Narsimha Karumanchi, CareerMonk Publications.
- 6. Data Structures using C, R.Thareja, Oxford University Press.
- 7. Data Structures, S.Lipscutz, Schaum's Outlines, TMH.
- 8. Data structures using C, A.K.Sharma, 2nd edition, Pearson..
- 9. Data Structures using C &C++, R.Shukla, Wiley India.
- 10. Classic Data Structures, D.Samanta, 2nd edition, PHI.

11. Advanced Data structures, Peter Brass, Cambridge.

Outcomes:

- Learn how to use data structure concepts for realistic problems.
- Ability to identify appropriate data structure for solving computing problems in respective language.
- Ability to solve problems independently and think critically.

COMPUTER SCIENCE AND ENGINEERING 2013-14 69 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II	Year	B.Tech.	CSE-I Sem	
----	------	---------	-----------	--

ech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A30401) DIGITAL LOGIC DESIGN

Objectives:

- To understand basic number systems codes and logical gates.
- To understand the Boolean algebra and minimization logic.
- To understand the design of combinational sequential circuits.
- To understand the basic s of various memory. .

UNIT-I

Digital Systems: Binary Numbers, Octal, Hexa Decimal and other base numbers, Number base conversions, complements, signed binary numbers, Floating point number representation, binary codes, error detecting and correcting codes, digital logic gates(AND, NAND, OR, NOR, Ex-OR, Ex-NOR), Boolean algebra, basic theorems and properties, Boolean functions, canonical and standard forms.

UNIT-II

Gate -Level Minimization and combination circuits, The K-Maps Methods, Three Variable, Four Variable, Five Variable, sum of products, product of sums Simplification, Don't care conditions, NAND and NOR implementation and other two level implantation.

UNIT-III

Combinational Circuits (CC): Design Procedure, Combinational circuit for different code converters and other problems, Binary Adder, subtractor, Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, Demultiplexers.

UNIT-IV

Synchronous Sequential Circuits: Latches, Flip-flops, analysis of clocked sequential circuits, design of counters, Up-down counters, Ripple counters , Registers, Shift registers, Synchronous Counters.

Asynchronous Sequential Circuits: Reduction of state and follow tables, Role free Conditions.

UNIT-V:

Memory: Random Access memory, types of ROM, Memory decoding, address and data bus, Sequential Memory, Cache Memory, Programmable Logic Arrays, memory Hierarchy in terms of capacity and access time.

TEXT BOOK:

1) Digital Design- M. Morris Mano.

REFERENCE BOOKS:

- 1) Switching and Finite Automata Theory by Zvi. Kohavi, Tata McGraw Hill.
- 2) Switching and Logic Design, C.V.S. Rao, Pearson Education.
- Digital Principles and Design Donald D.Givone, Tata McGraw Hill, Edition.
- 4) Fundamentals of Digital Logic & Micro Computer Design , 5TH Edition,M. Rafiquzzaman John Wiley.

Outcomes:

After this course student could able to design, understand the number systems, combinational sequential circuits. And they should be in a position to continue with computer organization.

COMPUTER SCIENCE AND ENGINEERING 2013-14 71 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-I Sem

L. T/P/D С 4

4 -/-/-

(A30404) ELECTRONIC DEVICES AND CIRCUITS

Objectives:

This is a fundamental course, basic knowledge of which is required by all the circuit branch engineers. This course focuses:

- To familiarize the student with the principle of operation, analysis and . design of Junction diode, BJT and FET amplifier circuits, transistors and field effect transistors.
- To understand diode as rectifier.
- To study basic principle of filter circuits and various types.

UNIT -I

P-N Junction Diode: Qualitative Theory of P-N Junction, P-N Junction as a Diode, Diode Equation, Volt-Ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical - Resistance levels (Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semiconductor Diodes, Zener Diode Characteristics.

Special Purpose Electronic Devices: Principle of Operation and Characteristics of Tunnel Diode (with the help of Energy Band Diagram), Varactor Diode, SCR and Semiconductor Photo Diode.

UNIT -II

Rectifiers and Filters : The P-N junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier, Harmonic components in a Rectifier Circuit, Inductor Filters, Capacitor Filters, L- Section Filters, p- Section Filters, Comparision of Filters, Voltage Regulation using Zener Diode.

UNIT -III

Bipolar Junction Transistor and UJT: The Junction Transistor, Transistor Current Components, Transistor as an Amplifier, Transistor Construction, BJT Operation, BJT Symbol, Common Base, Common Emitter and Common Collector Configurations, Limits of Operation, BJT Specifications, BJT Hybrid Model, Determination of h-parameters from Transistor Characteristics, Comparison of CB, CE, and CC Amplifier Configurations, UJT and Characteristics.

UNIT -IV

Transistor Biasing and Stabilization: Operating Point, The DC and AC Load lines, Need for Biasing, Fixed Bias, Collector Feedback Bias, Emitter Feedback Bias, Collector - Emitter Feedback Bias, Voltage Divider Bias, Bias Stability, Stabilization Factors, Stabilization against variations in VBE and ß, Bias Compensation using Diodes and Transistors, Thermal Runaway, Thermal Stability, Analysis of a Transistor Amplifier Circuit using h-Parameters.

UNIT -V

Field Effect Transistor and FET Amplifiers

Field Effect Transistor: The Junction Field Effect Transistor (Construction, principle of operation, symbol) – Pinch-off Voltage - Volt-Ampere characteristics, The JFET Small Signal Model, MOSFET (Construction, principle of operation, symbol), MOSFET Characteristics in Enhancement and Depletion modes.

FET Amplifiers: FET Common Source Amplifier, Common Drain Amplifier, Generalized FET Amplifier, Biasing FET, FET as Voltage Variable Resistor, Comparison of BJT and FET.

TEXT BOOKS:

- Millman's Electronic Devices and Circuits J. Millman, C.C.Halkias, and Satyabrata Jit, 2 Ed., 1998, TMH.
- Electronic Devices and Circuits Mohammad Rashid, Cengage Learing, 2013
- 3. Electronic Devices and Circuits David A. Bell, 5 Ed, Oxford.

REFERENCE BOOKS:

- Integrated Electronics J. Millman and Christos C. Halkias, 1991 Ed., 2008, TMH.
- Electronic Devices and Circuits R.L. Boylestad and Louis Nashelsky, 9 Ed., 2006, PEI/PHI.
- 3. Electronic Devices and Circuits B. P. Singh, Rekha Singh, Pearson, 2 Ed, 2013.
- 4. Electronic Devices and Circuits --K. Lal Kishore, 2 Ed., 2005, BSP.
- Electronic Devices and Circuits Anil K. Maini, Varsha Agarwal, 1 Ed., 2009, Wiley India Pvt. Ltd.
- Electronic Devices and Circuits S.Salivahanan, N.Suresh Kumar, A.Vallavaraj, 2 Ed., 2008, TMH.

Outcomes:

- Understand and Analyse the different types of diodes, operation and its characteristics.
- Design and analyse the DC bias circuitry of BJT and FET.
- Design biasing circuits using diodes and transistors.
- To analyze and design diode application circuits, amplifier circuits and oscillators employing BJT, FET devices.

COMPUTER SCIENCE AND ENGINEERING 2013-14 73 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-I Sem

L. T/P/D С -/-/-4 4

(A30202) BASIC ELECTRICAL ENGINEERING

Objectives:

This course introduces the concepts of basic electrical engineering parameters, quantities, analysis of AC and DC circuits, the construction operation and analysis of transformers, DC and AC machines. It also gives knowledge about measuring instruments operation in detail.

UNIT – I

Introduction to Electrical Engineering: Ohm's law, basic circuit components, Kirchhoff's laws. Simple problems.

Network Analysis: Basic definitions, types of elements, types of sources, resistive networks, inductive networks, capacitive networks, and series parallel circuits, star delta and delta star transformation. , Network theorems-Superposition, Thevenins's, Maximum power transfer theorems and simple problems.

UNIT-II

Alternating Quantities: Principle of ac voltages, waveforms and basic definitions, root mean square and average values of alternating currents and voltage, form factor and peak factor, phasor representation of alternating quantities, the J operator and phasor algebra, analysis of ac circuits with single basic network element, single phase series circuits.

UNIT-III

Transformers : Principles of operation, Constructional Details, Ideal Transformer and Practical Transformer, Losses, Transformer Test, Efficiency and Regulation Calculations (All the above topics are only elementary treatment and simple problems).

UNIT-IV

D.C. and A.C. Machines:

D.C generators: Principle of operation of dc machines, types of D.C generators, EMF equation in D.C generator. D.C motors: Principle of operation of dc motors, types of D.C motors, losses and torque equation, losses and efficiency calculation in D.C generator. A.C Machines: Three phase induction motor, principle of operation, slip and rotor frequency, torque (simple problems).

UNIT V

Basic Instruments: Introduction, classification of instruments, operating

principles, essential features of measuring instruments, Moving coil permanent magnet (PMMC) instruments, Moving Iron of Ammeters and Voltmeters (elementary Treatment only).

TEXT BOOKS:

- 1. Basic concepts of Electrical Engineering, PS Subramanyam, BS Publications.
- 2. Basic Electrical Engineering, S.N. Singh, PHI.

REFERENCE BOOKS:

- 1. Basic Electrical Engineering, Abhijit Chakrabarthi, Sudipta nath, Chandrakumar Chanda, Tata-McGraw-Hill.
- 2. Principles of Electrical Engineering, V.K Mehta, Rohit Mehta, S.Chand Publications.
- 3. Basic Electrical Engineering, T.K.Nagasarkar and M.S. Sukhija, Oxford University Press.
- 4. Fundamentals of Electrical Engineering, RajendraPrasad, PHI.
- 5. Basic Electrical Engineering by D.P.Kothari , I.J. Nagrath, McGraw-Hill.

Outcomes:

After going through this course the student gets a thorough knowledge on basic electrical circuits, parameters, and operation of the transformers in the energy conversion process, electromechanical energy conversion, construction operation characteristics of DC and AC machines and the constructional features and operation of operation measuring instruments like voltmeter, ammeter, wattmeter etc...With which he/she can able to apply the above conceptual things to real-world electrical and electronics problems and applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

Il Year B.Tech. CSE-I Sem L	
-----------------------------	--

T/P/D C -/3/- 2

-

(A30282) ELECTRICAL AND ELECTRONICS LAB

PART - A

- 1. Verification of Superposition and Reciprocity theorems.
- 2. Verification of Maximum power transfer theorem.
- 3. Verification of Thevenin's and Norton's theorems.
- 4. Magnetization characteristics of D.C. Shunt generator.
- 5. Swinburne's Test on DC shunt machine.
- 6. Brake test on DC shunt motor.
- 7. OC and SC tests on Single-phase transformer.
- 8. Brake test on 3-phase Induction motor.

PART - B

- 1. PN Junction Diode Characteristics (Forward bias, Reverse bias).
- 2. Zener Diode Characteristics.
- 3. Transistor CE Characteristics (Input and Output).
- 4. Rectifier without Filters (Full wave & Half wave).
- 5. Rectifier with Filters (Full wave & Half wave).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech		L	T/P/D	С				
					-	-/3/-	2	

(A30582) DATA STRUCTURES LAB

Objectives:

- To write and execute programs in C to solve problems using data structures such as arrays, linked lists, stacks, queues, trees, graphs, hash tables and search trees.
- To write and execute write programs in C to implement various sorting and searching methods.

Recommended Systems/Software Requirements:

- Intel based desktop PC with minimum of 166 MHZ or faster processor with at least 64 MB RAM and 100 MB free disk space.
- C compiler.

Week1:

Write a C program that uses functions to perform the following:

- a) Create a singly linked list of integers.
- b) Delete a given integer from the above linked list.
- c) Display the contents of the above list after deletion.

Week2:

Write a C program that uses functions to perform the following:

- a) Create a doubly linked list of integers.
- b) Delete a given integer from the above doubly linked list.
- c) Display the contents of the above list after deletion.

Week3:

Write a C program that uses stack operations to convert a given infix expression into its postfix Equivalent, Implement the stack using an array.

Week 4:

Write C programs to implement a double ended queue ADT using i)array and ii)doubly linked list respectively.

Week 5 :

Write a C program that uses functions to perform the following:

- a) Create a binary search tree of characters.
- b) Traverse the above Binary search tree recursively in Postorder.

Week 6 :

Write a C program that uses functions to perform the following:

a) Create a binary search tree of integers.

b) Traverse the above Binary search tree non recursively in inorder.

Week 7:

Write C programs for implementing the following sorting methods to arrange a list of integers in Ascending order :

a) Insertion sort b) Merge sort

Week 8 :

Write C programs for implementing the following sorting methods to arrange a list of integers in ascending order:

a) Quick sort b) Selection sort

Week 9:

i) Write a C program to perform the following operation:

a)Insertion into a B-tree.

ii) Write a C program for implementing Heap sort algorithm for sorting a given list of integers in ascending order.

Week 10:

Write a C program to implement all the functions of a dictionary (ADT) using hashing.

Week 11:

Write a C program for implementing Knuth-Morris- Pratt pattern matching algorithm.

Week 12:

Write C programs for implementing the following graph traversal algorithms:

a)Depth first traversal b)Breadth first traversal

TEXT BOOKS:

- 1. C and Data Structures, Third Edition, P.Padmanabham, BS Publications.
- 2. C and Data Structures, Prof. P.S.Deshpande and Prof. O.G. Kakde, Dreamtech Press.
- 3. Data structures using C, A.K.Sharma, 2nd edition, Pearson.
- 4. Data Structures using C, R.Thareja, Oxford University Press.
- 5. C and Data Structures, N.B.Venkateswarlu and E.V.Prasad, S.Chand.

6. C Programming and Data Structures, P.Radha Krishna, Hi-Tech Publishers.

Outcomes:

- Ability to identify the appropriate data structure for given problem.
- Graduate able to design and analyze the time and space complexity of algorithm or program.
- Ability to effectively use compilers includes library functions, debuggers and trouble shooting.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

Year B.Tech. CSE-II Sem	L	T,
	4	-

T/P/D C -/-/- 4

(A40506) COMPUTER ORGANIZATION

Objectives:

Ш

- To understand basic components of computers.
- To explore the I/O organizations in depth.
- To explore the memory organization.
- To understand the basic chip design and organization of 8086 with assembly language programming.

UNIT-I

Basic Computer Organization – Functions of CPU, I/O Units, Memory: Instruction: Instruction Formats- One address, two addresses, zero addresses and three addresses and comparison; addressing modes with numeric examples: Program Control- Status bit conditions, conditional branch instructions, Program Interrupts: Types of Interrupts.

UNIT-II

Input-Output Organizations- I/O Interface, I/O Bus and Interface modules: I/O Vs memory Bus, Isolated Vs Memory-Mapped I/O, Asynchronous data Transfer- Strobe Control, Hand Shaking: Asynchronous Serial transfer- Asynchronous Communication interface, Modes of transfer-Programmed I/O, Interrupt Initiated I/O,DMA; DMA Controller, DMA Transfer, IOP-CPU-IOP Communication, Intel 8089 IOP.

UNIT-III

Memory Organizations

Memory hierarchy, Main Memory, RAM, ROM Chips, Memory Address Map, Memory Connection to CPU, associate memory, Cache Memory, Data Cache, Instruction cache, Miss and Hit ratio, Access time, associative, set associative, mapping, waiting into cache, Introduction to virtual memory.

UNIT-IV

8086 CPU Pin Diagram- Special functions of general purpose registers, Segment register, concept of pipelining, 8086 Flag register, Addressing modes of 8086.

UNIT-V

8086-Instruction formats: assembly Language Programs involving branch & Call instructions, sorting, evaluation of arithmetic expressions.

TEXT BOOKS:

- 1) Computer system Architecture: Morris Mano (UNIT-1,2,3).
- 2) Advanced Micro Processor and Peripherals- Hall/ A K Ray(UNIT-4,5).

REFERENCE BOOKS:

- 1) Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.
- 2) Structured Computer Organization Andrew S. Tanenbaum, 4th Edition PHI/Pearson.
- Fundamentals or Computer Organization and Design, Sivaraama Dandamudi Springer Int. Edition.
- 4) Computer Architecture a quantitative approach, John L. Hennessy and David A. Patterson, Fourth Edition Elsevier.
- 5) Computer Architecture: Fundamentals and principles of Computer Design, Joseph D. Dumas II, BS Publication.

Outcomes:

After this course students understand in a better way the I/O and memory organization in depth. They should be in a position to write assembly language programs for various applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

T/P/D C -/-/- 4

L.

4

(A40507) DATABASE MANAGEMENT SYSTEMS

Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- To understand the relational database design principles.
- To become familiar with the basic issues of transaction processing and concurrency control.
- To become familiar with database storage structures and access techniques.

UNIT- I

Introduction-Database System Applications, Purpose of Database Systems, View of Data – Data Abstraction, Instances and Schemas, Data Models, Database Languages – DDL, DML, Database Access from Application Programs, Transaction Management, Data Storage and Querying, Database Architecture, Database Users and Administrators, History of Data base Systems.

Introduction to Data base design, ER diagrams, Beyond ER Design, Entities, Attributes and Entity sets, Relationships and Relationship sets, Additional features of ER Model, Conceptual Design with the ER Model, Conceptual Design for Large enterprises. Relational Model: Introduction to the Relational Model – Integrity Constraints over Relations, Enforcing Integrity constraints, Querying relational data, Logical data base Design, Introduction to Views – Destroying /altering Tables and Views.

UNIT- II

Relational Algebra and Calculus: Relational Algebra – Selection and Projection, Set operations, Renaming, Joins, Division, Examples of Algebra Queries, Relational calculus – Tuple relational Calculus – Domain relational calculus – Expressive Power of Algebra and calculus.

Form of Basic SQL Query – Examples of Basic SQL Queries, Introduction to Nested Queries, Correlated Nested Queries, Set – Comparison Operators, Aggregate Operators, NULL values – Comparison using Null values – Logical connectives – AND, OR and NOT – Impact on SQL Constructs, Outer Joins, Disallowing NULL values, Complex Integrity Constraints in SQL Triggers and Active Data bases.

UNIT- III

Introduction to Schema Refinement – Problems Caused by redundancy, Decompositions – Problem related to decomposition, Functional Dependencies - Reasoning about FDS, Normal Forms – FIRST, SECOND, THIRD Normal forms – BCNF –Properties of Decompositions- Loss lessjoin Decomposition, Dependency preserving Decomposition, Schema Refinement in Data base Design – Multi valued Dependencies – FOURTH Normal Form, Join Dependencies, FIFTH Normal form, Inclusion Dependencies.

UNIT- IV

Transaction Management-Transaction Concept- Transaction State-Implementation of Atomicity and Durability – Concurrent – Executions – Serializability- Recoverability – Implementation of Isolation – Testing for serializability.

Concurrency Control- Lock –Based Protocols – Timestamp Based Protocols-Validation- Based Protocols – Multiple Granularity.

Recovery System-Failure Classification-Storage Structure-Recovery and Atomicity – Log – Based Recovery – Recovery with Concurrent Transactions – Buffer Management – Failure with loss of nonvolatile storage-Advance Recovery systems- Remote Backup systems.

UNIT- V

Overview of Storage and Indexing: Data on External Storage, File Organization and Indexing – Clustered Indexes, Primary and Secondary Indexes, Index data Structures – Hash Based Indexing, Tree based Indexing, Comparison of File Organizations.

Tree Structured Indexing: Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM) B+ Trees: A Dynamic Index Structure, Search, Insert, Delete.

Hash Based Indexing: Static Hashing, Extendable hashing, Linear Hashing, Extendible vs. Linear Hashing.

TEXT BOOKS:

- 1. Data base Management Systems, Raghu Ramakrishnan, Johannes Gehrke, TMH, 3rd Edition, 2003.
- 2. Data base System Concepts, A.Silberschatz, H.F. Korth, S.Sudarshan, McGraw hill, VI edition, 2006.

REFERENCE BOOKS:

- 1. Database Systems, 6th edition, Ramez Elmasri, Shamkant B.Navathe, Pearson Education, 2013.
- 2. Database Principles, Programming, and Performance, P.O'Neil, E.O'Neil, 2nd ed., ELSEVIER.

- 3. Database Systems, A Practical approach to Design Implementation and Management Fourth edition, Thomas Connolly, Carolyn Begg, Pearson education.
- 4. Database System Concepts, Peter Rob & Carlos Coronel, Cengage Learning, 2008.
- 5. Fundamentals of Relational Database Management Systems, S.Sumathi, S.Esakkirajan, Springer.
- 6. Database Management System Oracle SQL and PL/SQL, P.K.Das Gupta, PHI.
- 7. Introduction to Database Management, M.L.Gillenson and others, Wiley Student Edition.
- 8. Database Development and Management, Lee Chao, Auerbach publications, Taylor & Francis Group.
- 9. Introduction to Database Systems, C.J.Date, Pearson Education.
- 10. Database Management Systems, G.K.Gupta, TMH.

Outcomes:

- Demonstrate the basic elements of a relational database management system.
- Ability to identify the data models for relevant problems.
- Ability to design entity relationship and convert entity relationship diagrams into RDBMS and formulate SQL queries on the respect data.
- Apply normalization for the development of application software's.

COMPUTER SCIENCE AND ENGINEERING 2013-14 84 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Yea

ear B.Tech. CSE-II Sem	L	T/P/D	С	
	4	-/-/-	4	

(A40503) JAVA PROGRAMMING

Objectives:

- To understand object oriented programming concepts, and apply them in problem solving.
- To learn the basics of java Console and GUI based programming. .

UNIT- I

OOP concepts - Data abstraction, encapsulation, inheritance, benefits of inheritance, polymorphism, classes and objects, Procedural and object oriented programming paradigms

Java programming - History of Java, comments, data types, variables, constants, scope and life time of variables, operators, operator hierarchy, expressions, type conversion and casting, enumerated types, control flow block scope, conditional statements, loops, break and continue statements, simple java stand alone programs, arrays, console input and output, formatting output, constructors, methods, parameter passing, static fields and methods, access control, this reference, overloading methods and constructors, recursion, garbage collection, building strings, exploring string class.

UNIT- II

Inheritance - Inheritance hierarchies, super and sub classes, Member access rules, super keyword, preventing inheritance: final classes and methods, the Object class and its methods

Polymorphism- dynamic binding, method overriding, abstract classes and methods.

Interfaces - Interfaces vs. Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface.

Inner classes - Uses of inner classes, local inner classes, anonymous inner classes, static inner classes, examples.

Packages-Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages.

UNIT- III

Exception handling - Dealing with errors, benefits of exception handling, the classification of exceptions- exception hierarchy, checked exceptions and unchecked exceptions, usage of try, catch, throw, throws and finally, rethrowing exceptions, exception specification, built in exceptions, creating

own exception sub classes.

Multithreading - Differences between multiple processes and multiple threads, thread states, creating threads, interrupting threads, thread priorities, synchronizing threads, inter-thread communication, producer consumer pattern.

UNIT- IV

Collection Framework in Java – Introduction to Java Collections, Overview of Java Collection frame work, Generics, Commonly used Collection classes– Array List, Vector, Hash table, Stack, Enumeration, Iterator, String Tokenizer, Random, Scanner, calendar and Properties

Files – streams- byte streams, character streams, text Input/output, binary input/output, random access file operations, File management using File class.

Connecting to Database - JDBC Type 1 to 4 drivers, connecting to a database, querying a database and processing the results, updating data with JDBC.

UNIT- V

GUI Programming with Java - The AWT class hierarchy, Introduction to Swing, Swing vs. AWT, Hierarchy for Swing components, Containers – JFrame, JApplet, JDialog, JPanel, Overview of some swing components-Jbutton, JLabel, JTextField, JTextArea, simple swing applications, Layout management - Layout manager types – border, grid and flow

Event handling - Events, Event sources, Event classes, Event Listeners, Relationship between Event sources and Listeners, Delegation event model, Examples: handling a button click, handling mouse events, Adapter classes.

Applets – Inheritance hierarchy for applets, differences between applets and applications, life cycle of an applet, passing parameters to applets, applet security issues.

TEXT BOOK:

1. Java Fundamentals – A comprehensive Introduction, Herbert Schildt and Dale Skrien, TMH.

REFERENCE BOOKS:

- 1. Java for Programmers, P.J.Deitel and H.M.Deitel, Pearson education (OR) Java: How to Program P.J.Deitel and H.M.Deitel, PHI.
- 2. Object Oriented Programming through Java, P.Radha Krishna, Universities Press.
- 3. Thinking in Java, Bruce Eckel, Pearson Education
- 4. Programming in Java, S.Malhotra and S.Choudhary, Oxford Univ. Press.

Outcomes:

- Understanding of OOP concepts and basics of java programming (Console and GUI based).
- The skills to apply OOP and Java programming in problem solving.
- Should have the ability to extend his/her knowledge of Java programming further on his/her own.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

C 4

II Year B.Tech. CSE-II Sem	L	T/P/D	
	4	_/_/_	

(A40009) ENVIRONMENTAL STUDIES

Objectives:

- 1. Understanding the importance of ecological balance for sustainable development.
- 2. Understanding the impacts of developmental activities and mitigation measures.
- 3. Understanding of environmental policies and regulations

UNIT-I :

Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure and function of an ecosystem, Food chains, food webs and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II:

Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT-III:

Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV:

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and

characteristics of e-Waste and its management. **Pollution control technologies:** Wastewater Treatment methods: Primary, secondary and Tertiary, Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Problems And Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol and Montréal Protocol.

UNIT-V:

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

SUGGESTED TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press. **REFERENCE BOOKS:**

1. Environmental Science: towards a sustainable future by Richard T.Wright. 2008 PHL Learning Private Ltd. New Delhi.

- 2. Environmental Engineering and science by Gilbert M.Masters and Wendell P. Ela .2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B.Botkin & Edward A.Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.

Outcomes:

Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which inturn helps in sustainable development.

COMPUTER SCIENCE AND ENGINEERING 2013-14 89 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

L T/P/D С 4 4

-/-/-

(A40509) FORMAL LANGUAGES AND AUTOMATA THEORY

Objectives:

The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.

- Classify machines by their power to recognize languages. •
- Employ finite state machines to solve problems in computing.
- Explain deterministic and non-deterministic machines.
- Comprehend the hierarchy of problems arising in the computer sciences.

UNIT- I

Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite automaton model, acceptance of strings, and languages, deterministic finite automaton and non deterministic finite automaton, transition diagrams and Language recognizers. Finite Automata : NFA with e transitions - Significance, acceptance of languages. Conversions and Equivalence : Equivalence between NFA with and without e-transitions, NFA to DFA conversion, minimisation of FSM, equivalence between two FSM's, Finite Automata with output- Moore and Melay machines.

UNIT-II

Regular Languages : Regular sets, regular expressions, identity rules, Constructing finite Automata for a given regular expressions, Conversion of Finite Automata to Regular expressions. Pumping lemma of regular sets, closure properties of regular sets (proofs not required) Grammar Formalism : Regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and FA, inter conversion, Context free grammar, derivation trees, sentential forms. Right most and leftmost derivation of strings.

UNIT- III

Context Free Grammars : Ambiguity in context free grammars. Minimisation of Context Free Grammars. Chomsky normal form, Greiback normal form, Pumping Lemma for Context Free Languages. Enumeration of properties of CFL (proofs omitted).Push Down Automata : Push down automata, definition, model, acceptance of CFL, Acceptance by final state and acceptance by empty state and its equivalence. Equivalence of CFL and PDA, interconversion. (Proofs not required). Introduction to DCFL and DPDA.

UNIT- IV

Turing Machine : Turing Machine, definition, model, design of TM, Computable functions, recursively enumerable languages. Church's hypothesis, counter machine, types of Turing machines (proofs not required). linear bounded automata and context sensitive language.

UNIT- V

Computability Theory : Chomsky hierarchy of languages, decidability of, problems, Universal Turing Machine, undecidability of posts. Correspondence problem, Turing reducibility, Definition of P and NP problems, NP complete and NP hard problems.

TEXT BOOKS :

- 1. "Introduction to Automata Theory Languages and Computation". Hopcroft H.E. and Ullman J. D. Pearson Education.
- 2. Introduction to Theory of Computation –Sipser 2nd edition Thomson.

REFERENCE BOOKS :

- 1. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan Rama R.
- 2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
- 3. Theory Of Computation: A Problem-Solving Approach, Kavi Mahesh, Wiley India Pvt. Ltd.
- 4. "Elements of Theory of Computation", Lewis H.P. & Papadimition C.H. Pearson /PHI.
- 5. Theory of Computer Science Automata languages and computation -Mishra and Chandrashekaran, 2nd edition, PHI.

Outcomes:

- Graduate should be able to understand the concept of abstract machines and their power to recognize the languages.
- Attains the knowledge of language classes & grammars relationship among them with the help of Chomsky hierarchy.
- Graduate will be able to understanding the pre-requisites to the course compiler or advanced compiler design.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

T/P/D C -/-/- 4

4

(A40508) DESIGN AND ANALYSIS OF ALGORITHMS

Objectives:

- To analyze performance of algorithms.
- To choose the appropriate data structure and algorithm design method for a specified application.
- To understand how the choice of data structures and algorithm design methods impacts the performance of programs.
- To solve problems using algorithm design methods such as the greedy method, divide and conquer, dynamic programming, backtracking and branch and bound.
- Prerequisites (Subjects) Data structures, Mathematical foundations of computer science.

UNIT- I

Introduction: Algorithm, Pseudo code for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, Probabilistic analysis, Amortized complexity.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's Matrix Multiplication.

UNIT- II

Searching and Traversal Techniques: Efficient non-recursive binary tree traversal algorithms, Disjoint set operations, union and find algorithms, Spanning trees, Graph traversals- Breadth first search and Depth first search, AND/OR graphs, game trees, Connected Components, Bi-connected components.

UNIT- III

Greedy method: General method, applications-Job sequencing with deadlines, 0/1 knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

Dynamic Programming: General method, applications-Multistage graphs, Optimal binary search trees,0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT- IV

Backtracking: General method, applications-n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles.

Branch and Bound: General method, applications - Traveling sales person problem,0/1 knapsack problem-LC Branch and Bound solution, FIFO Branch and Bound solution.

UNIT- V

NP-Hard and NP-Complete problems: Basic concepts, Non-deterministic algorithms, NP - Hard and NP- Complete classes, NP-Hard problems, Cook's theorem.

TEXT BOOKS:

- 1. Fundamentals of Computer Algorithms, 2nd Edition, Ellis Horowitz, Satraj Sahni and S.Rajasekharan, Universities Press, 2008.
- 2. Foundations of Algorithms, 4th edition, R.Neapolitan and K.Naimipour, Jones and Bartlett Learning.
- 3. Design and Analysis of Algorithms, P.H.Dave, H.B.Dave, Pearson Education, 2008.

REFERENCE BOOKS:

- 1. Computer Algorithms, Introduction to Design and Analysis, 3rd Edition, Sara Baase, Allen, Van, Gelder, Pearson Education.
- 2. Algorithm Design: Foundations, Analysis and Internet examples, M.T.Goodrich and R.Tomassia, John Wiley and sons.
- 3. Fundamentals of Sequential and Parallel Algorithms, K.A.Berman and J.L.Paul, Cengage Learning.
- 4. Introduction to the Design and Analysis of Algorithms, A.Levitin, Pearson Education.
- 5. Introduction to Algorithms,3rd Edition, T.H.Cormen, C.E.Leiserson, R.L.Rivest, and C.Stein, PHI Pvt.Ltd.
- 6. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson Education, 2004.

Outcomes:

- Be able to analyze algorithms and improve the efficiency of algorithms.
- Apply different designing methods for development of algorithms to realistic problems, such as divide and conquer, greedy and etc.
- Ability to understand and estimate the performance of algorithm.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem	L	T/P/D	С
	-	-/3/-	2

(A40585) JAVA PROGRAMMING LAB

Objectives:

To introduce java compiler and eclipse platform.

To impart hand on experience with java programming. Note:

- 1. Use Linux and MySQL for the Lab Experiments. Though not mandatory, encourage the use of Eclipse platform.
- 2. The list suggests the minimum program set. Hence, the concerned staff is requested to add more problems to the list as needed.
- Use Eclipse or Netbean platform and acquaint with the various menus. Create a test project, add a test class and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
- 2) Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 3a) Develop an applet in Java that displays a simple message.
- b) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named "Compute" is clicked.
- 4) Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box.
- 5) Write a Java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
- 6) Write a Java program that connects to a database using JDBC and

does add, delete, modify and retrieve operations.

- 7) Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "Stop" or "Ready" or "Go" should appear above the buttons in selected color. Initially, there is no message shown.
- 8) Write a Java program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea () that prints the area of the given shape.
- 9) Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Labels in Grid Layout.
- 10) Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).
- 11) Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (\t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables).
- 12) Implement the above program with database instead of a text file.
- 13) Write a Java program that takes tab separated data (one record per line) from a text file and inserts them into a database.
- 14) Write a java program that prints the meta-data of a given table

TEXT BOOK:

1. Java Fundamentals – A comprehensive Introduction, Herbert Schildt and Dale Skrien, TMH.

REFERENCE BOOKS:

- 1. Java for Programmers, P.J.Deitel and H.M.Deitel, Pearson education (OR) Java: How to Program P.J.Deitel and H.M.Deitel, PHI.
- 2. Object Oriented Programming through Java, P.Radha Krishna, Universities Press.
- 3. Thinking in Java, Bruce Eckel, Pearson Education.
- 4. Programming in Java, S.Malhotra and S.Choudhary, Oxford Univ. Press.

Outcomes:

- Basics of java programming, multi-threaded programs and Exception handling.
- The skills to apply OOP in Java programming in problem solving.
- Ability to access data from a DB with Java programs.
- Use of GUI components (Console and GUI based).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

SE-II Sem	L	T/P/D	С	
	-	-/3/-	2	

(A40584) DATABASE MANAGEMENT SYSTEMS LAB

Objectives:

This lab enables the students to practice the concepts learnt in the subject DBMS by developing a database for an example company named "Roadway Travels" whose description is as follows. The student is expected to practice the designing, developing and querying a database in the context of example database "Roadway travels". Students are expected to use "Mysql" database.

Roadway Travels

"Roadway Travels" is in business since 1997 with several buses connecting different places in India. Its main office is located in Hyderabad.

The company wants to computerize its operations in the following areas:

- Reservations and Ticketing
- Cancellations

Reservations & Cancellation:

Reservations are directly handled by booking office. Reservations can be made 30 days in advance and tickets issued to passenger. One Passenger/person can book many tickets (to his/her family).

Cancellations are also directly handed at the booking office.

In the process of computerization of Roadway Travels you have to design and develop a Database which consists the data of Buses, Passengers, Tickets, and Reservation and cancellation details. You should also develop query's using SQL to retrieve the data from the database.

The above process involves many steps like 1. Analyzing the problem and identifying the Entities and Relationships, 2. E-R Model 3. Relational Model 4. Normalization 5. Creating the database 6. Querying. Students are supposed to work on these steps week wise and finally create a complete "Database System" to Roadway Travels. Examples are given at every experiment for guidance to students.

Experiment 1: E-R Model

Analyze the carefully and come up with the entities in it. Identify what data has to be persisted in the database. This contains the entities, attributes etc. Identify the primary keys for all the entities. Identify the other keys like

candidate keys, partial keys, if any. **Example: Entities:**

- 1. BUS

2. Ticket

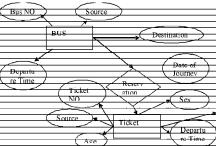
3. Passenger

Relationships:

- 1. Reservation
- 2. Cancellation

PRIMARY KEY ATTRIBUTES:

- 1. Ticket ID (Ticket Entity)
- 2. Passport ID (Passenger Entity)
- 3. Bus_NO(Bus Entity)


Apart from the above mentioned entities you can identify more. The above mentioned are few.

Note: The student is required to submit a document by writing the Entities and Keys to the lab teacher.

Experiment 2: Concept design with E-R Model

Relate the entities appropriately. Apply cardinalities for each relationship. Identify strong entities and weak entities (if any). Indicate the type of relationships (total / partial). Try to incorporate generalization, aggregation, specialization etc wherever required.

Example: E-R diagram for bus

Note: The student is required to submit a document by drawing the E-R Diagram to the lab teacher.

Experiment 3: Relational Model

Represent all the entities (Strong, Weak) in tabular fashion. Represent relationships in a tabular fashion. There are different ways of representing relationships as tables based on the cardinality. Represent attributes as columns in tables or as tables based on the requirement. Different types of attributes (Composite, Multi-valued, and Derived) have different way of representation.

Example: The passenger tables look as below. This is an example. You can

add more attributes based on your E-R model. This is not a normalized table.

Passenger

Name	Age	Sex	Address	Ticket_id	Passport ID

Note: The student is required to submit a document by Represent relationships in a tabular fashion to the lab teacher.

Experiment 4: Normalization

Database normalization is a technique for designing relational database tables to minimize duplication of information and, in so doing, to safeguard the database against certain types of logical or structural problems, namely data anomalies. For example, when multiple instances of a given piece of information occur in a table, the possibility exists that these instances will not be kept consistent when the data within the table is updated, leading to a loss of data integrity. A table that is sufficiently normalized is less vulnerable to problems of this kind, because its structure reflects the basic assumptions for when multiple instances of the same information should be represented by a single instance only.

For the above table in the First normalization we can remove the multi valued attribute Ticket_id and place it in another table along with the primary key of passenger.

First Normal Form: The above table can be divided into two tables as shown below.

Passenger

Name	Age	Sex	Address	Passport ID
Passport ID	Ticket_	id		

You can do the second and third normal forms if required. Any how Normalized tables are given at the end.

Experiment 5: Installation of Mysql and practicing DDL commands

Installation of MySql. In this week you will learn Creating databases, How to create tables, altering the database, dropping tables and databases if not required. You will also try truncate, rename commands etc.

Example for creation of a normalized "Passenger" table.

CREATE TABLE Passenger (

Passport_id INTEGER PRIMARY KEY,

Name VARCHAR (50) Not NULL,

Age Integer Not NULL,

Sex Char,

Address VARCHAR (50) Not NULL);

Similarly create all other tables.

Note: Detailed creation of tables is given at the end.

Experiment 6: Practicing DML commands

DML commands are used to for managing data within schema objects. Some examples:

- SELECT retrieve data from the a database
- INSERT insert data into a table
- UPDATE updates existing data within a table
- DELETE deletes all records from a table, the space for the records remain

Inserting values into "Bus" table:

```
Insert into Bus values (1234,'hyderabad', 'tirupathi');
Insert into Bus values (2345,'hyderabd','Banglore');
Insert into Bus values (23,'hyderabd','Kolkata');
Insert into Bus values (45,'Tirupathi,'Banglore');
Insert into Bus values (34,'hyderabd','Chennai');
Insert into Bus values (34,'hyderabd','Chennai');
Insert into Passenger values (1, 45,'ramesh', 45,'M','abc123');
Insert into Passenger values (2, 78,'geetha', 36,'F','abc123');
Insert into Passenger values (45, 90,'ram', 30,'M','abc122');
Insert into Passenger values (67, 89,'ravi', 50,'M','abc12');
Insert into Passenger values (56, 22,'seetha', 32,'F','abc55');
Few more Examples of DML commands:
Select * from Bus; (selects all the attributes and display)
```

UPDATE BUS SET Bus No = 1 WHERE BUS NO=2;

Experiment 7: Querying

In this week you are going to practice queries (along with sub queries) using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.

Practice the following Queries:

- 1. Display unique PNR_no of all passengers.
- 2. Display all the names of male passengers.
- 3. Display the ticket numbers and names of all the passengers.
- 4. Find the ticket numbers of the passengers whose name start with 'r' and ends with 'h'.
- 5. Find the names of passengers whose age is between 30 and 45.
- 6. Display all the passengers names beginning with 'A'
- 7. Display the sorted list of passengers names

Experiment 8 and Experiment 9: Querying (continued...)

You are going to practice queries using Aggregate functions (COUNT, SUM, AVG, and MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.

- 1. Write a Query to display the Information present in the Passenger and cancellation tables. Hint: Use UNION Operator.
- 2. Display the number of days in a week on which the 9W01 bus is available.
- 3. Find number of tickets booked for each PNR_no using GROUP BY CLAUSE. Hint: Use GROUP BY on PNR_No.
- 4. Find the distinct PNR numbers that are present.
- Find the number of tickets booked by a passenger where the number of seats is greater than 1. Hint: Use GROUP BY, WHERE and HAVING CLAUSES.
- 6. Find the total number of cancelled seats.

Experiment 10: Triggers

In this week you are going to work on Triggers. Creation of insert trigger, delete trigger, update trigger. Practice triggers using the above database.

Eg: CREATE TRIGGER updcheck BEFORE UPDATE ON passenger

FOR EACH ROW BEGIN

IF NEW.TickentNO > 60 THEN

SET New.Tickent no = Ticket no;

ELSE

SET New.Ticketno = 0;

END IF;

END;

Experiment 11: Procedures

In this session you are going to learn Creation of stored procedure, Execution of procedure and modification of procedure. Practice procedures using the above database.

Eg:CREATE PROCEDURE myProc()

BEGIN

SELECT COUNT(Tickets) FROM Ticket WHERE age>=40;

End;

Experiment 12: Cursors

In this week you need to do the following: Declare a cursor that defines a result set.

Open the cursor to establish the result set. Fetch the data into local variables as needed from the cursor, one row at a time. Close the cursor when done

CREATE PROCEDURE myProc(in_customer_id INT)

BEGIN

DECLARE v_id INT;

DECLARE v_name VARCHAR (30);

DECLARE c1 CURSOR FOR SELECT stdld,stdFirstname FROM students WHERE stdld=in_customer_id;

OPEN c1;

FETCH c1 into v_id, v_name;

Close c1;

END;

Tables

BUS

Bus No: Varchar: PK (public key)

Source : Varchar

Destination : Varchar

Passenger

PPNO: Varchar(15)) : PK

Name: Varchar(15)

Age : int (4) Sex:Char(10) : Male / Female Address: VarChar(20)

Passenger_Tickets

PPNO: Varchar(15)) : PK

Ticket_No: Numeric (9)

Reservation

PNR_No: Numeric(9) : FK

Journey_date : datetime(8)

No_of_seats : int (8)

Address : Varchar (50)

Contact_No: Numeric (9) --> Should not be less than 9 and Should not accept any other character other than Integer

Status: Char (2) : Yes / No

Cancellation

PNR_No: Numeric(9) : FK

Journey_date : datetime(8)

No_of_seats : int (8)

Address : Varchar (50)

Contact_No: Numeric (9) --> Should not be less than 9 and Should not accept any other character other than Integer

Status: Char (2) : Yes / No

Ticket

Ticket_No: Numeric (9): PK

Journey_date : datetime(8)

Age : int (4)

Sex:Char(10) : Male / Female

Source : Varchar

Destination : Varchar

Dep_time : Varchar

REFERENCE BOOKS:

- 1. Introduction to SQL, Rick F.Vander Lans, Pearson education.
- 2. Oracle PL/SQL, B.Rosenzweig and E.Silvestrova, Pearson education.
- 3. Oracle PL/SQL Programming, Steven Feuerstein, SPD.
- 4. SQL & PL/SQL for Oracle 10g, Black Book, Dr.P.S.Deshpande, Dream

Tech.

- 5. Oracle Database 11g PL/SQL Programming, M.Mc Laughlin, TMH.
- 6. SQL Fundamentals, J.J.Patrick, Pearson Education.

Outcomes:

- Ability to design and implement a database schema for given problem.
- Be capable to Design and build a GUI application.
- Apply the normalization techniques for development of application software to realistic problems.
- Ability to formulate queries using SQL DML/DDL/DCL commands.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-I Sem	L	T/P/D
	4	-/-/-

-/-/- 4

С

(A50511) PRINCIPLES OF PROGRAMMING LANGUAGES

Objectives:

- To briefly describe various programming paradigms.
- To provide conceptual understanding of High level language design and implementation.
- To introduce the power of scripting languages.

UNIT- I

Preliminary Concepts: Reasons for studying, concepts of programming languages, Programming domains, Language Evaluation Criteria, influences on Language design, Language categories, Programming Paradigms – Imperative, Object Oriented, functional Programming, Logic Programming. Programming Language Implementation – Compilation and Virtual Machines, programming environments. Syntax and Semantics: general Problem of describing Syntax and Semantics, formal methods of describing syntax - BNF, EBNF for common programming languages features, parse trees, ambiguous grammars, attribute grammars, denotational semantics and axiomatic semantics for common programming language features.

UNIT- II

Data types: Introduction, primitive, character, user defined, array, associative, record, union, pointer and reference types, design and implementation uses related to these types. Names, Variable, concept of binding, type checking, strong typing, type compatibility, named constants, variable initialization. Expressions and Statements: Arithmetic relational and Boolean expressions, Short circuit evaluation mixed mode assignment, Assignment Statements, Control Structures – Statement Level, Compound Statements, Selection, Iteration, Unconditional Statements, guarded commands.

UNIT-III

Subprograms and Blocks: Fundamentals of sub-programs, Scope and lifetime of variable, static and dynamic scope, Design issues of subprograms and operations, local referencing environments, parameter passing methods, overloaded sub-programs, generic sub-programs, parameters that are sub-program names, design issues for functions user defined overloaded operators, co routines.

UNIT- IV

Abstract Data types: Abstractions and encapsulation, introductions to data abstraction, design issues, language examples, C++ parameterized ADT,

object oriented programming in small talk, C++, Java, C#, Ada 95

Concurrency: Subprogram level concurrency, semaphores, monitors, massage passing, Java threads, C# threads.

Exception handling : Exceptions, exception Propagation, Exception handler in Ada, C++ and Java.

Logic Programming Language : Introduction and overview of logic programming, basic elements of prolog, application of logic programming.

UNIT- V

Functional Programming Languages: Introduction, fundamentals of FPL, LISP, ML, Haskell, application of Functional Programming Languages and comparison of functional and imperative Languages.

Scripting Language: Pragmatics, Key Concepts, Case Study : Python – Values and Types, Variables , Storage and Control, Bindings and Scope, Procedural Abstraction, Data Abstraction, Separate Compilation, Module Library.

TEXT BOOKS:

- 1. Concepts of Programming Languages Robert .W. Sebesta 8/e, Pearson Education,2008.
- 2. Programming Language Design Concepts, D. A. Watt, Wiley dreamtech,rp-2007.

REFERENCE BOOKS:

- 1. Programming Languages, 2nd Edition, A.B. Tucker, R.E. Noonan, TMH.
- 2. Programming Languages, K. C.Louden, 2nd Edition, Thomson, 2003.
- 3. LISP, Patric Henry Winston and Paul Horn, Pearson Education.
- 4. Programming in Prolog, W.F. Clocksin,& C.S.Mellish, 5th Edition, Springer.
- 5. Programming Python, M.Lutz, 3rd Edition, O'reilly, SPD, rp-2007.
- 6. Core Python Programming, Chun, II Edition, Pearson Education, 2007.

7. Guide to Programming with Python, Michael Dawson, Thomson, 2008 **Outcomes:**

- Ability to express syntax and semantics in formal notation.
- Ability to apply suitable programming paradigm for the application.
- Gain Knowledge and comparison of the features programming languages.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-I Sem L T/P/D C

4 -/-/- 4

(A50018) HUMAN VALUES AND PROFESSIONAL ETHICS

(Open Elective)

Objectives : This introductory course input is intended

- a. To help the students appreciate the essential complementarity between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- b. To facilitate the development of a Holistic perspective among students towards life, profession and happiness, based on a correct understanding of the Human reality and the rest of Existence. Such a holistic perspective forms the basis of Value based living in a natural way.
- c. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually satisfying human behavior and mutually enriching interaction with Nature.

Unit I:

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: Understanding the need, basic guidelines, content and process for Value Education. Self Exploration–what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration. Continuous Happiness and Prosperity- A look at basic Human Aspirations. Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

Unit II:

Understanding Harmony in the Human Being - Harmony in Myself! : Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail. Programs to ensure Sanyam and Swasthya.

Unit III:

Understanding Harmony in the Family and Society- Harmony in Human

- Human Relationship : Understanding harmony in the Family- the basic unit of human interaction. Understanding values in human-human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) as the foundational values of relationship. Understanding the meaning of Vishwas; Difference between intention and competence. Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship. Understanding the harmony in the society (society being an extension of family): Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals. Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order (Sarvabhaum Vyawastha)- from family to world family!

Unit IV:

Understanding Harmony in the Nature and Existence - Whole existence as Co-existence : Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature-recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all-pervasive space. Holistic perception of harmony at all levels of existence.

Unit V:

Implications of the above Holistic Understanding of Harmony on Professional Ethics : Natural acceptance of human values. Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in professional ethics:

- a) Ability to utilize the professional competence for augmenting universal human order,
- b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems,
- c) Ability to identify and develop appropriate technologies and management patterns for above production systems.

Case studies of typical holistic technologies, management models and production systems. Strategy for transition from the present state to Universal Human Order:

- a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers
- b) At the level of society: as mutually enriching institutions and organizations

TEXT BOOKS

1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in

Human Values and Professional Ethics.

2. Prof. KV Subba Raju, 2013, Success Secrets for Engineering Students, Smart Student Publications,3rd Edition.

REFERENCE BOOKS

- 1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and HarperCollins, USA
- E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain.
- 3. A Nagraj, 1998, Jeevan Vidya ek Parichay, Divya Path Sansthan, Amarkantak.
- 4. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 5. PL Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Purblishers.
- 6. A.N. Tripathy, 2003, Human Values, New Age International Publishers.
- 7. Subhas Palekar, 2000, How to practice Natural Farming, Pracheen(Vaidik) Krishi Tantra Shodh, Amravati.
- Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, Universe Books.
- 9. E G Seebauer & Robert L. Berry, 2000, Fundamentals of Ethics for Scientists & Engineers, Oxford University Press
- M Govindrajran, S Natrajan & V.S. Senthil Kumar, Engineering Ethichs (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.

Relevant CDs, Movies, Documentaries & Other Literature:

- 1. Value Education website, http://www.uptu.ac.in
- 2. Story of Stuff, http://www.storyofstuff.com
- 3. Al Gore, An Inconvenient Truth, Paramount Classics, USA
- 4. Charlie Chaplin, Modern Times, United Artists, USA
- 5. IIT Delhi, Modern Technology the Untold Story

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CS	SE-I Sem
---------------------	----------

L. T/P/D С

4 -/-/-4

(A50017) INTELLECTUAL PROPERTY RIGHTS

(Open Elective)

UNIT – I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II

Trade Marks : Purpose and function of trade marks, acquisition of trade mark rights, protectable matter, selecting and evaluating trade mark, trade mark registration processes.

UNIT - III

Law of copy rights : Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents : Foundation of patent law, patent searching process, ownership rights and transfer

UNIT - IV

Trade Secrets : Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition : Misappropriation right of publicity, False advertising. UNIT – V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international - trade mark law, copy right law, international patent law, international development in trade secrets law.

TEXT BOOKS & REFERENCES:

- 1. Intellectual property right, Deborah. E. Bouchoux, cengage learing.
- 2. Intellectual property right - Unleashing the knowledge economy, prabuddha ganguli, Tate Mc Graw Hill Publishing company ltd.,

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

C 4

Year B.Tech. CSE-I Sem	L	T/P/D	
	4	-/-/-	

(A50117) DISASTER MANAGEMENT

(Open Elective)

Unit-I

Ш

Environmental Hazards & Disasters: Meaning of Environmental hazards, Environmental Disasters and Environmental stress. Concept of Environmental Hazards, Environmental stress & Environmental Disasters. Different approaches & relation with human Ecology - Landscape Approach - Ecosystem Approach - Perception approach - Human ecology & its application in geographical researches.

Unit –II

Types of Environmental hazards & Disasters: Natural hazards and Disasters - Man induced hazards & Disasters - Natural Hazards- Planetary Hazards/ Disasters - Extra Planetary Hazards/ disasters - Planetary Hazards- Endogenous Hazards - Exogenous Hazards –

Unit –III

Endogenous Hazards - Volcanic Eruption – Earthquakes – Landslides - Volcanic Hazards/ Disasters - Causes and distribution of Volcanoes - Hazardous effects of volcanic eruptions - Environmental impacts of volcanic eruptions - Earthquake Hazards/ disasters - Causes of Earthquakes - Distribution of earthquakes - Hazardous effects of - earthquakes - Earthquake Hazards in India - Human adjustment, perception & mitigation of earthquake.

Unit –IV

Exogenous hazards/ disasters - Infrequent events- Cumulative atmospheric hazards/ disasters

Infrequent events: Cyclones – Lightning – Hailstorms

Cyclones: Tropical cyclones & Local storms - Destruction by tropical cyclones & local storms (causes, distribution human adjustment, perception & mitigation) Cumulative atmospheric hazards/ disasters : - Floods- Droughts-Cold waves- Heat waves Floods:- Causes of floods- Flood hazards India-Flood control measures (Human adjustment, perception & mitigation) Droughts:- Impacts of droughts- Drought hazards in India- Drought control measures- Extra Palnetary Hazards/ Disasters- Man induced Hazards / Disasters- Physical hazards/ Disasters-Soil Erosion

Soil Erosion:-- Mechanics & forms of Soil Erosion- Factors & causes of Soil Erosion- Conservation measures of Soil Erosion

Chemical hazards/ disasters:-- Release of toxic chemicals, nuclear explosion- Sedimentation processes Sedimentation processes:- Global Sedimentation problems- Regional Sedimentation problems- Sedimentation & Environmental problems- Corrective measures of Erosion & Sedimentation

Biological hazards/ disasters:- Population Explosion.

Unit –V

Emerging approaches in Disaster Management- Three Stages

- 1. Pre- disaster stage (preparedness)
- 2. Emergency Stage
- 3. Post Disaster stage-Rehabilitation

TEXT BOOKS:

- 1. Disaster Mitigation: Experiences And Reflections by Pardeep Sahni
- Natural Hazards & Disasters by Donald Hyndman & David Hyndman

 Cengage Learning

REFERENCES

- 1. R.B.Singh (Ed) Environmental Geography, Heritage Publishers New Delhi,1990
- 2. Savinder Singh Environmental Geography, Prayag Pustak Bhawan, 1997
- Kates,B.I & White, G.F The Environment as Hazards, oxford, New York, 1978
- 4. R.B. Singh (Ed) Disaster Management, Rawat Publication, New Delhi, 2000
- 5. H.K. Gupta (Ed) Disaster Management, Universiters Press, India, 2003
- R.B. Singh, Space Technology for Disaster Mitigation in India (INCED), University of Tokyo, 1994
- Dr. Satender , Disaster Management t in Hills, Concept Publishing Co., New Delhi, 2003
- 8. A.S. Arya Action Plan For Earthquake, Disaster, Mitigation in V.K. Sharma (Ed) Disaster Management IIPA Publication New Delhi, 1994
- 9. R.K. Bhandani An overview on Natural & Man made Disaster & their Reduction,CSIR, New Delhi
- 10. M.C. Gupta Manuals on Natural Disaster management in India, National Centre for Disaster Management, IIPA, New Delhi, 2001

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A50518) SOFTWARE ENGINEERING

Objectives:

- To understanding of software process models such as waterfall and evolutionary models.
- To understanding of software requirements and SRS document.
- To understanding of different software architectural styles.
- To understanding of software testing approaches such as unit testing and integration testing.
- To understanding on quality control and how to ensure good quality software.

UNIT- I

Introduction to Software Engineering: The evolving role of software, Changing Nature of Software, legacy software, Software myths.

A Generic view of process: Software engineering- A layered technology, a process framework, The Capability Maturity Model Integration (CMMI), Process patterns, process assessment, personal and team process models.

Process models: The waterfall model, Incremental process models, Evolutionary process models, Specialized process models, The Unified process.

UNIT- II

Software Requirements: Functional and non-functional requirements, User requirements, System requirements, Interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, Requirements elicitation and analysis, Requirements validation, Requirements management.

System models: Context Models, Behavioral models, Data models, Object models, structured methods.

UNIT- III

Design Engineering: Design process and Design quality, Design concepts, the design model, pattern based software design.

Creating an architectural design: software architecture, Data design, Architectural styles and patterns, Architectural Design, assessing alternative architectural designs, mapping data flow into a software architecture.

Modeling component-level design : Designing class-based components, conducting component-level design, Object constraint language, designing conventional components.

Performing User interface design: Golden rules, User interface analysis and design, interface analysis, interface design steps, Design evaluation. UNIT- IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, Black-Box and White-Box testing, Validation testing, System testing, the art of Debugging.

Product metrics: Software Quality, Frame work for Product metrics, Metrics for Analysis Model, Metrics for Design Model, Metrics for source code, Metrics for testing, Metrics for maintenance.

Metrics for Process and Products: Software Measurement, Metrics for software quality.

UNIT- V

Risk management: Reactive vs Proactive Risk strategies, software risks, Risk identification, Risk projection, Risk refinement, RMMM, RMMM Plan.

Quality Management: Quality concepts, Software quality assurance, Software Reviews, Formal technical reviews, Statistical Software quality Assurance, Software reliability, The ISO 9000 quality standards.

TEXT BOOKS:

- 1. Software Engineering A practitioner's Approach, Roger S Pressman, sixth edition McGrawHill International Edition.
- 2. Software Engineering, Ian Sommerville, seventh edition, Pearson education.

REFERENCE BOOKS:

- 1. Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India,2010.
- 2. Software Engineering : A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008
- 3. Fundamentals of Software Engineering, Rajib Mall, PHI, 2005
- 4. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press.
- 5. Software Engineering1: Abstraction and modeling, Diner Bjorner, Springer International edition, 2006.
- Software Engineering2: Specification of systems and languages, Diner 6. Bjorner, Springer International edition 2006.
- 7. Software Engineering Foundations, Yingxu Wang, Auerbach

Publications,2008.

- 8. Software Engineering Principles and Practice, Hans Van Vliet,3rd edition, John Wiley &Sons Ltd.
- 9. Software Engineering 3:Domains,Requirements,and Software Design, D.Bjorner, Springer International Edition.
- 10. Introduction to Software Engineering, R.J.Leach, CRC Press.

- Ability to identify the minimum requirements for the development of application.
- Ability to develop, maintain, efficient, reliable and cost effective software solutions
- Ability to critically thinking and evaluate assumptions and arguments.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A50514) COMPILER DESIGN

Objectives:

- To describe the steps and algorithms used by language translators.
- To discuss the effectiveness of optimization.
- To explain the machine dependent aspects of Compilation

UNIT – I

Overview of Compilation: Phases of Compilation – Lexical Analysis, Regular Grammar and regular expression for common programming language features, pass and Phases of translation, interpretation, bootstrapping, data structures in compilation – LEX lexical analyzer generator.

Top down Parsing: Context free grammars, Top down parsing – Backtracking, LL (1), recursive descent parsing, Predictive parsing, Preprocessing steps required for predictive parsing.

UNIT – II

Bottom up parsing : Shift Reduce parsing, LR and LALR parsing, Error recovery in parsing , handling ambiguous grammar, YACC – automatic parser generator.

UNIT – III

Semantic analysis : Intermediate forms of source Programs – abstract syntax tree, polish notation and three address codes. Attributed grammars, Syntax directed translation, Conversion of popular Programming languages language Constructs into Intermediate code forms, Type checker.

Symbol Tables : Symbol table format, organization for block structures languages, hashing, tree structures representation of scope information. Block structures and non block structure storage allocation: static, Runtime stack and heap storage allocation, storage allocation for arrays, strings and records.

UNIT – IV

Code optimization : Consideration for Optimization, Scope of Optimization, local optimization, loop optimization, frequency reduction, folding, DAG representation.

Data flow analysis : Flow graph, data flow equation, global optimization, redundant sub expression elimination, Induction variable elements, Live variable analysis, Copy propagation.

UNIT – V

Object code generation : Object code forms, machine dependent code optimization, register allocation and assignment generic code generation algorithms, DAG for register allocation.

TEXT BOOKS :

- 1. Principles of compiler design -A.V. Aho . J.D.Ullman; Pearson Education.
- 2. Modern Compiler Implementation in C- Andrew N. Appel, Cambridge University Press.

REFERENCE BOOKS :

- 1. lex &yacc John R. Levine, Tony Mason, Doug Brown, O'reilly
- 2. Modern Compiler Design- Dick Grune, Henry E. Bal, Cariel T. H. Jacobs, Wiley dreamtech.
- 3. Engineering a Compiler-Cooper & Linda, Elsevier.
- 4. Compiler Construction, Louden, Thomson.

- Ability to understand the design of a compiler given features of the languages.
- Ability to implement practical aspects of automata theory.
- Gain Knowledge of powerful compiler generation tools.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

T/P/D C -/-/- 4

L.

4

(A50510) OPERATING SYSTEMS

Objectives:

- To understand main components of OS and their working
- To study the operations performed by OS as a resource manager
- To understand the scheduling policies of OS
- To understand the different memory management techniques
- To understand process concurrency and synchronization
- To understand the concepts of input/output, storage and file management
- To study different OS and compare their features.

UNIT- I

Operating System Introduction: Operating Systems objectives and functions, Computer System Architecture, OS Structure, OS Operations, Evolution of Operating Systems - Simple Batch, Multi programmed, time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, Special -Purpose Systems, Operating System services, User OS Interface, System Calls, Types of System Calls, System Programs, Operating System Design and Implementation, OS Structure, Virtual Machines.

UNIT- II

Process and CPU Scheduling - Process concepts-The Process, Process State, Process Control Block, Threads, Process Scheduling-Scheduling Queues, Schedulers, Context Switch, Preemptive Scheduling, Dispatcher, Scheduling Criteria, Scheduling algorithms, Multiple-Processor Scheduling, Real-Time Scheduling, Thread scheduling, Case studies: Linux, Windows.

Process Coordination – Process Synchronization, The Critical Section Problem, Peterson's solution, Synchronization Hardware, Semaphores, and Classic Problems of Synchronization, Monitors, Case Studies: Linux, Windows.

UNIT- III

Memory Management and Virtual Memory - Logical & Physical Address Space, Swapping, Contiguous Allocation, Paging, Structure of Page Table, Segmentation, Segmentation with Paging, Virtual Memory, Demand Paging, Performance of Demanding Paging, Page Replacement Page Replacement Algorithms, Allocation of Frames, Thrashing.

UNIT- IV

File System Interface - The Concept of a File, Access methods, Directory Structure, File System Mounting, File Sharing, Protection, File System Implementation - File System Structure, File System Implementation, Allocation methods, Free-space Management, Directory Implementation, Efficiency and Performance.

Mass Storage Structure – Overview of Mass Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, Disk Management, Swap space Management

UNIT- V

Deadlocks - System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Recovery from Deadlock.

Protection – System Protection, Goals of Protection, Principles of Protection, Domain of Protection, Access Matrix, Implementation of Access Matrix, Access Control, Revocation of Access Rights, Capability-Based Systems, Language-Based Protection.

TEXT BOOKS:

- 1. Operating System Principles , Abraham Silberchatz, Peter B. Galvin, Greg Gagne, 8th Edition, Wiley Student Edition
- 2. Operating Systems Internals and Design Principles, W. Stallings, 6th Edition, Pearson.

REFERENCE BOOKS:

- 1. Modern Operating Systems, Andrew S Tanenbaum, 3rd Edition, PHI
- 2. Operating Systems A concept-based Approach, 2nd Edition, D.M.Dhamdhere, TMH.
- 3. Principles of Operating Systems, B.L.Stuart, Cengage learning, India Edition.
- 4. Operating Systems, A.S.Godbole, 2nd Edition, TMH
- 5. An Introduction to Operating Systems, P.C.P. Bhatt, PHI.
- 6. Operating Systems, S.Haldar and A.A.Aravind, Pearson Education.
- 7. Operating Systems, R.Elmasri, A,G.Carrick and D.Levine, Mc Graw Hill.
- 8. Operating Systems in depth, T.W. Doeppner, Wiley.

- Apply optimization techniques for the improvement of system performance.
- Ability to understand the synchronous and asynchronous

communication mechanisms in their respective OS.

- Learn about minimization of turnaround time, waiting time and response time and also maximization of throughput with keeping CPU as busy as possible.
- Ability to compare the different OS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III	Year	B.Tech.	CSE-I	Sem
-----	------	---------	-------	-----

L T/P/D C 4 -/-/- 4

(A50515) COMPUTER NETWORKS

Objectives:

- To introduce the fundamental various types of computer networks.
- To demonstrate the TCP/IP and OSI models with merits and demerits.
- To explore the various layers of OSI Model.
- To introduce UDP and TCP Models.

UNIT-I

Overview of the Internet: Protocol, Layering Scenario, TCP/IP Protocol Suite: The OSI Model, Internet history standards and administration; Comparison of the OSI and TCP/IP reference model.

Physical Layer: Guided transmission media, wireless transmission media.

Data Link Layer – design issues, CRC Codes, Elementary Data link Layer protocols, sliding window protocol

UNIT-II

Multiple Access Protocols –ALOHA, CSMA, Collision free protocols, Ethernet- Physical Layer, Ethernet Mac Sub layer, data link layer switching & use of bridges, learning bridges, spanning tree bridges, repeaters, hubs, bridges, switches, routers and gateways.

UNIT-III

Network Layer: Network Layer Design issues, store and forward packet switching connection less and connection oriented networks-routing algorithms-optimality principle, shortest path, flooding, Distance Vector Routing, Count to Infinity Problem, Hierarchical Routing, Congestion control algorithms, admission control.

UNIT-IV

Internetworking: Tunneling, Internetwork Routing, Packet fragmentation, IPv4, Ipv6 Protocol, IP addresses, CIDR, IMCP, ARP, RARP, DHCP.

Transport Layer: Services provided to the upper layers elements of transport protocol-addressing connection establishment, connection release, Connection Release, Crash Recovery.

UNIT-V

The Internet Transport Protocols UDP-RPC, Real Time Transport Protocols, The Internet Transport Protocols- Introduction to TCP, The TCP Service Model, The TCP Segment Header, The Connection Establishment, The TCP Connection Release, The TCP Connection Management Modeling, The TCP Sliding Window, The TCP Congestion Control, The future of TCP.

Application Layer-Introduction ,providing services, Applications layer paradigms, Client server model, Standard client-server application-HTTP, FTP, electronic mail, TELNET, DNS, SSH

TEXT BOOKS:

- 1. Data Communications and Networking Behrouz A. Forouzan, Fifth Edition TMH, 2013.
- 2. Computer Networks -- Andrew S Tanenbaum, 4th Edition, Pearson Education.

REFERENCE BOOKS:

- 1. An Engineering Approach to Computer Networks-S.Keshav, 2nd Edition, Pearson Education.
- 2. Understanding communications and Networks, 3rd Edition, W.A.Shay, Cengage Learning.
- 3. Introduction to Computer Networks and Cyber Security, Chwan-Hwa (John) Wu, J. David Irwin, CRC Press.
- 4. Computer Networks, L.L.Peterson and B.S.Davie, 4th edition, ELSEVIER.
- 5. Computer Networking: A Top-Down Approach Featuring the Internet, James F.Kurose,K.W.Ross,3rd Edition, Pearson Education.

- Students should be understand and explore the basics of Computer Networks and Various Protocols. He/She will be in a position to understand the World Wide Web concepts.
- Students will be in a position to administrate a network and flow of information further he/she can understand easily the concepts of network security, Mobile and ad hoc networks.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

C 2

III Year B.Tech. CSE-I Sem	L	T/P/D
	-	-/3/-

(A50589) OPERATING SYSTEMS LAB

Objectives:

- To use inux perating system for study of operating system concepts.
- To write the code to mplement nd odify ariousconcepts in operating systems using Linux.

List of Programs:

- Simulate the following CPU scheduling algorithms

 a) Round Robin
 b) SJF
 c) FCFS
 d) Priority
- 2. Simulate all file allocation strategies
- a) Sequential b) Indexed c) Linked
- 3. Simulate MVT and MFT
- 4. Simulat all File Organization Techniquesa) Single level directory b) Two level c) Hierarchical d) DAG
- 5. Simulate Bankers Algorithm for Dead Lock Avoidance
- 6. Simulate Bankers Algorithm for Dead Lock Prevention
- Simulate all page replacement algorithms
 a) FIF
 b) LRU
 c) LFU Etc.
- 8. Simulate Paging Technique of memory management.

- The course objectives ensure the development of students applied skills in operating systems related areas.
- Students willgin knowledge in writing oftware routines odules or mplementing various concepts of perating systems

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-I Sem	L	T/P/D	С
	-	-/3/-	2

(A50587) COMPILER DESIGN LAB

Objectives:

• To provide an understanding of the language translation peculiarities by designing a complete translator for a mini language.

Recommended Systems/Software Requirements:

- Intel based desktop PC with minimum of 166 MHZ or faster processor with atleast 64 MB RAM and 100 MB free disk space
- C++ compiler and JDK kit

Consider the following mini Language, a simple procedural high-level language, only operating on integer

data, with a syntax looking vaguely like a simple C crossed with Pascal. The syntax of the language is

defined by the following BNF grammar:

<program> ::= <block>

<block> ::= { <variabledefinition> <slist> }

| { <slist> }

```
<variabledefinition> ::= int <vardeflist> ;
```

```
<vardeflist> ::= <vardec> | <vardec> , <vardeflist>
```

```
<vardec> ::= <identifier> | <identifier> [ <constant> ]
```

```
<slist> ::= <statement> | <statement> ; <slist>
```

<statement> ::= <assignment> | <ifstatement> | <whilestatement>

| <block> | <printstatement> | <empty>

<assignment> ::= <identifier> = <expression>

| <identifier> [<expression>] = <expression>

<ifstatement> ::= if <bexpression> then <slist> else <slist> endif

```
| if <bexpression> then <slist> endif
```

<whilestatement> ::= while <bexpression> do <slist> enddo

```
<printstatement> ::= print ( <expression> )
```

<expression> ::= <expression> <addingop> <term> | <term> | <addingop> <term>

<relop> ::= < | <= | == | >= | > | !=

```
<addingop> ::= + | -
<term> ::= <term> <multop> <factor> | <factor>
<multop> ::= * | /
<factor> ::= <constant> | <identifier> | <identifier> [ <expression>]
( <expression> )
<constant> ::= <digit> | <digit> <constant>
<identifier> ::= <identifier> <letterordigit> | <letter>
<letterordigit> ::= <letter> | <digit>
<letter> ::= a|b|c|d|e|f|g|h|i|j|k|||m|n|o|p|q|r|s|t|u|v|w|x|y|z
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<empty> has the obvious meaning
Comments (zero or more characters enclosed between the standard C/Java-
style comment brackets /
*...*/) can be inserted. The language has rudimentary support for 1-
dimensional arrays. The declaration
int a[3] declares an array of three elements, referenced as a[0], a[1] and
a[2]. Note also that you should
worry about the scoping of names.
A simple program written in this language is:
{ int a[3],t1,t2;
t1=2;
a[0]=1; a[1]=2; a[t1]=3;
t2=-(a[2]+t1*6)/(a[2]-t1);
if t2>5 then
print(t2);
else {
int t3;
t3=99;
t2=-25;
print(-t1+t2*t3); /* this is a comment
on 2 lines */
} endif }
1.
         Design a Lexical analyzer for the above language. The lexical
```

- analyzer should ignore redundant spaces, tabs and newlines. It should also ignore comments. Although the syntax specification states that

identifiers can be arbitrarily long, you may restrict the length to some reasonable value.

- 2. Implement the lexical analyzer using JLex, flex or lex or other lexical analyzer generating tools.
- 3. Design Predictive parser for the given language
- 4. Design LALR bottom up parser for the above language.
- 5. Convert the BNF rules into Yacc form and write code to generate abstract syntax tree.
- 6. Write program to generate machine code from the abstract syntax tree generated by the parser. The following instruction set may be considered as target code.

The following is a simple register-based machine, supporting a total of 17 instructions. It has three distinct internal storage areas. The first is the set of 8 registers, used by the individual instructions as detailed below, the second is an area used for the storage of variables and the third is an area used for the storage of program. The instructions can be preceded by a label. This consists of an integer in the range 1 to 9999 and the label is followed by a colon to separate it from the rest of the instruction. The numerical label can be used as the argument to a jump instruction, as detailed below.

In the description of the individual instructions below, instruction argument types are specified as follows :

R

specifies a register in the form R0, R1, R2, R3, R4, R5, R6 or R7 (or r0, r1, etc.).

L

specifies a numerical label (in the range 1 to 9999).

V

specifies a "variable location" (a variable number, or a variable location pointed to by a register - see

below).

А

specifies a constant value, a variable location, a register or a variable location pointed to by a register (an indirect address). Constant values are specified as an integer value, optionally preceded by a minus sign, preceded by a # symbol. An indirect address is specified by an @ followed by a register.

So, for example, an A-type argument could have the form 4 (variable number 4), #4 (the constant value 4), r4 (register 4) or @r4 (the contents of register 4 identifies the variable location to be accessed).

The instruction set is defined as follows: LOAD A,R loads the integer value specified by A into register R. STORE R,V stores the value in register R to variable V. OUT R outputs the value in register R. NEG R negates the value in register R. ADD A,R adds the value specified by A to register R, leaving the result in register R. SUB A.R subtracts the value specified by A from register R, leaving the result in register R. MUL A,R multiplies the value specified by A by register R, leaving the result in register R. DIV A,R divides register R by the value specified by A, leaving the result in register R. JMP L causes an unconditional jump to the instruction with the label L. JEQ R.L jumps to the instruction with the label L if the value in register R is zero. JNE R,L jumps to the instruction with the label L if the value in register R is not zero. JGE R,L jumps to the instruction with the label L if the value in register R is greater than or equal to zero. JGT R,L jumps to the instruction with the label L if the value in register R is greater than zero. JLE R.L jumps to the instruction with the label L if the value in register R is less than or equal to zero. JLT R.L

jumps to the instruction with the label L if the value in register R is less than zero.

NOP

is an instruction with no effect. It can be tagged by a label.

STOP

stops execution of the machine. All programs should terminate by executing a STOP instruction.

- By this laboratory, students will understand the practical approach of how a compiler works.
- This will enable him to work in the development phase of new computer languages in industry.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-II Sem	L	T/P/D	С
	4	-/-/-	4

(A60521) DISTRIBUTED SYSTEMS

Objectives:

- To understand what and why a distributed system is.
- To understand theoretical concepts, namely, virtual time, agreement and consensus protocols.
- To understand IPC, Group Communication & RPC Concepts.
- To understand the DFS and DSM Concepts.
- To understand the concepts of transaction in distributed environment and associated concepts, namely, concurrency control, deadlocks and error recovery.

UNIT-I

Characterization of Distributed Systems: Introduction, Examples of Distributed Systems, Resource Sharing and the Web, Challenges.

System Models: Introduction, Architectural Models, Fundamental Models.

Time and Global States: Introduction, Clocks Events and Process States, Synchronizing Physical Clocks, Logical Time and Logical Clocks, Global States, Distributed Debugging.

Coordination and Agreement: Introduction, Distributed Mutual Exclusion, Elections, Multicast Communication, Consensus and Related Problems. **UNIT-III**

InterProcess Communication: Introduction, The API for the Internet Protocols, External Data Representation and Marshalling, Client-Server Communication, Group Communication, Case Study: IPC in **UNIX.**

Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Objects, Remote Procedure Call, Events and Notifications, Case Study: JAVA RMI.

UNIT-IV

Distributed File Systems: Introduction, File Service Architecture, Case Study 1: Sun Network File System, Case Study 2: The Andrew File System.

Name Services: Introduction, Name Services and the Domain Name System, Directory Services, Case Study of the Global Name Services.

Distributed Shared Memory: Introduction, Design and Implementation Issues, Sequential Consistency and IVY case study, Release Consistency,

Munin Case Study, Other Consistency Models.

UNIT- V

Transactions and Concurrency Control: Introduction, Transactions, Nested Transactions, Locks, Optimistic Concurrency Control, Timestamp Ordering, Comparison of Methods for Concurrency Control.

Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic Commit Protocols, Concurrency Control in Distributed Transactions, Distributed Deadlocks, Transaction Recovery.

TEXT BOOK:

 Distributed Systems, Concepts and Design, George Coulouris, J Dollimore and Tim Kindberg, Pearson Education, 4th Edition, 2009.

REFERENCE BOOKS:

- Distributed Systems, Principles and Paradigms, Andrew S. Tanenbaum, Maarten Van Steen, 2nd Edition, PHI.
- 2) Distributed Systems, An Algorithm Approach, Sukumar Ghosh, Chapman&Hall/CRC, Taylor & Fransis Group, 2007.

- Able to comprehend and design a new distributed system with the desired features.
- Able to start literature survey leading to further research in any subarea.
- Able to develop new distributed applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-II Sem	L	T/P/D	С
	4	-/-/-	4

(A60522) INFORMATION SECURITY

Objectives:

- Explain the objectives of information security
- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec
- Understand Intrusions and intrusion detection
- Discuss the fundamental ideas of public-key cryptography.
- Generate and distribute a PGP key pair and use the PGP package to send an encrypted e-mail message.
- Discuss Web security and Firewalls

UNIT – I

Attacks on Computers and Computer Security: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security

Cryptography: Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT – II

Symmetric key Ciphers: Block Cipher principles & Algorithms(DES, AES, Blowfish), Differential and Linear Cryptanalysis, Block cipher modes of operation, Stream ciphers, RC4,Location and placement of encryption function, Key distribution **Asymmetric key Ciphers:** Principles of public key cryptosystems, Algorithms(RSA, Diffie-Hellman, ECC), Key Distribution.

UNIT – III

Message Authentication Algorithms and Hash Functions: Authentication requirements, Functions, Message authentication codes, Hash Functions, Secure hash algorithm, Whirlpool, HMAC, CMAC, Digital signatures, knapsack algorithm **Authentication Applications:** Kerberos, X.509

Authentication Service, Public – Key Infrastructure, Biometric Authentication **UNIT – IV**

E-Mail Security: Pretty Good Privacy, S/MIME **IP Security:** IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, key management

UNIT – V

Web Security: Web security considerations, Secure Socket Layer and Transport Layer Security, Secure electronic transaction Intruders, Virus and Firewalls: Intruders, Intrusion detection, password management, Virus and related threats, Countermeasures, Firewall design principles, Types of firewalls Case Studies on Cryptography and security: Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability, Virtual Elections

TEXT BOOKS:

- 1. Cryptography and Network Security : William Stallings, Pearson Education,4th Edition
- Cryptography and Network Security : Atul Kahate, Mc Graw Hill, 2nd Edition

REFERENCE BOOKS:

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security : Forouzan Mukhopadhyay, Mc Graw Hill, 2nd Edition
- 3. Information Security, Principles and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Sceurity: WM.Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning

- Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-II Sem

L. T/P/D С -/-/-4 4

(A60524) OBJECT ORIENTED ANALYSIS AND DESIGN

Objectives:

- Concisely define the following key terms: class, object, state, behavior, object class, class diagram, object diagram, operation, encapsulation, constructor operation, query operation, update operation, scope operation, association, association role, multiplicity, association class, abstract class, concrete class, class-scope attribute, abstract operation, method, polymorphism, overriding, multiple classification, aggregation, and composition.
- Describe the activities in the different phases of the object-oriented development life cycle.
- State the advantages of object-oriented modeling vis-à-vis structured approaches.
- Compare and contrast the object-oriented model with the E-R and EER models.
- Model a real-world application by using a UML class diagram.
- Provide a snapshot of the detailed state of a system at a point in time using a UML (Unified Modeling Language) object diagram.
- Recognize when to use generalization, aggregation, and composition relationships.
- Specify different types of business rules in a class diagram.

UNIT- I

Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, Architecture, Software Development Life Cycle.

UNIT- II

Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams.

Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages.

Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams.

UNIT- III

Basic Behavioral Modeling-I: Interactions, Interaction diagrams.

Basic Behavioral Modeling-II: Use cases, Use case Diagrams, Activity

Diagrams.

UNIT- IV

Advanced Behavioral Modeling: Events and signals, state machines, processes and Threads, time and space, state chart diagrams.

Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams.

UNIT- V

Patterns and Frameworks, Artifact Diagrams. Case Study: The Unified Library application

TEXT BOOKS:

- 1. Grady Booch, James Rumbaugh, Ivar Jacobson : The Unified Modeling Language User Guide, Pearson Education 2nd Edition.
- Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado: UML
 2 Toolkit, WILEY-Dreamtech India Pvt. Ltd.

REFERENCE BOOKS:

- Meilir Page-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education.
- 2. Pascal Roques: Modeling Software Systems Using UML2, WILEY-Dreamtech India Pvt. Ltd.
- Atul Kahate: Object Oriented Analysis & Design, The McGraw-Hill Companies.
- 4. Mark Priestley: Practical Object-Oriented Design with UML, TMH.
- Appling UML and Patterns: An introduction to Object Oriented Analysis and Design and Unified Process, Craig Larman, Pearson Education.
- Object-Oriented Analysis and Design with the Unified Process By John W. Satzinger, Robert B Jackson and Stephen D Burd, Cengage Learning.
- 7. UML and C++, R.C.Lee, and W.M.Tepfenhart, PHI.
- 8. Object Oriented Analysis, Design and Implementation, B.Dathan, S.Ramnath, Universities Press.
- 9. OODesign with UML and Java, K.Barclay, J.Savage, Elsevier.
- 10. Learning UML 2.0, Russ Miles and Kim Hamilton, O'Reilly, SPD.

Outcomes: Graduate can able to take up the case studies and model it in different views with respect user requirement such as use case, logical, component and deployment and etc, and preparation of document of the project for the unified Library application.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-II Sem

- L T/P/D C
 - 4 -/-/- 4

(A60525) SOFTWARE TESTING METHODOLOGIES

Objectives:

To understand the software testing methodologies such as flow graphs and path testing, transaction flows testing, data flow testing, domain testing and logic base testing.

UNIT - I

Introduction:- Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs.

Flow graphs and Path testing:- Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - II

Transaction Flow Testing:-transaction flows, transaction flow testing techniques.

Dataflow testing:- Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing.

UNIT - III

Domain Testing:-domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT-IV

Paths, Path products and Regular expressions:- path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing:- overview, decision tables, path expressions, kv charts, specifications.

UNIT - V

State, State Graphs and Transition testing:- state graphs, good & bad state graphs, state testing, Testability tips.

Graph Matrices and Application:-Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner).

TEXT BOOKS:

1. Software Testing techniques – Boris Beizer, Dreamtech, second

edition.

2. Software Testing Tools – Dr.K.V.K.K.Prasad, Dreamtech.

REFERENCE BOOKS:

- 1. The craft of software testing Brian Marick, Pearson Education.
- Software Testing,3rd edition,P.C. Jorgensen, Aurbach Publications (Dist.by SPD).
- 3. Software Testing, N.Chauhan, Oxford University Press.
- 4. Introduction to Software Testing, P.Ammann&J.Offutt, Cambridge Univ.Press.
- 5. Effective methods of Software Testing, Perry, John Wiley, ^{2nd} Edition, 1999.
- 6. Software Testing Concepts and Tools, P.Nageswara Rao, dreamtech Press.
- 7. Software Testing, M.G.Limaye, TMH.
- 8. Software Testing, S.Desikan, G.Ramesh, Pearson.
- 9. Foundations of Software Testing, D.Graham & Others, Cengage Learning.
- 10. Foundations of Software Testing, A.P.Mathur, Pearson.

- Ability to apply the process of testing and various methodologies in testing for developed software.
- Ability to write test cases for given software to test it before delivery to the customer.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-II Sem	L	T/P/D	С
	4	-/-/-	4

(A60010) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS Objectives:

To enable the student to understand and appreciate, with a practical insight, the importance of certain basic issues governing the business operations namely: demand and supply, production function, cost analysis, markets, forms of business organisations, capital budgeting and financial accounting and financial analysis.

Unit I

Introduction & Demand Analysis: Definition, Nature and Scope of Managerial Economics. Demand Analysis: Demand Determinants, Law of Demand and its exceptions. *Elasticity of Demand*: Definition, Types, Measurement and Significance of Elasticity of Demand. *Demand Forecasting,* Factors governing demand forecasting, methods of demand forecasting.

Unit II

Production & Cost Analysis: *Production Function* – Isoquants and Isocosts, MRTS, Least Cost Combination of Inputs, Cobb-Douglas Production function, Laws of Returns, Internal and External Economies of Scale. *Cost Analysis*: Cost concepts. Break-even Analysis (BEA)-Determination of Break-Even Point (simple problems) - Managerial Significance.

Unit III

Markets & New Economic Environment: Types of competition and Markets, Features of Perfect competition, Monopoly and Monopolistic Competition. Price-Output Determination in case of Perfect Competition and Monopoly. *Pricing*: Objectives and Policies of Pricing. Methods of Pricing. *Business:* Features and evaluation of different forms of Business Organisation: Sole Proprietorship, Partnership, Joint Stock Company, Public Enterprises and their types, *New Economic Environment*. Changing Business Environment in Post-liberalization scenario.

Unit IV

Capital Budgeting: Capital and its significance, Types of Capital, Estimation of Fixed and Working capital requirements, Methods and sources of raising capital - Trading Forecast, Capital Budget, Cash Budget. Capital Budgeting: features of capital budgeting proposals, Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR) and Net Present Value Method (simple problems).

Unit V

Introduction to Financial Accounting & Financial Analysis: Accounting concepts and Conventions - Introduction IFRS - Double-Entry Book Keeping, Journal, Ledger, Trial Balance- Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis*: Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability ratios. Du Pont Chart.

TEXT BOOKS:

- 1. Varshney & Maheswari: Managerial Economics, Sultan Chand, 2009.
- 2. S.A. Siddiqui & A.S. Siddiqui, Managerial Economics and Financial Analysis, New Age international Publishers, Hyderabad 2013.
- M. Kasi Reddy & Saraswathi, Managerial Economics and Financial Analysis, PHI New Delhi, 2012.

REFERENCES:

- 1. Ambrish Gupta, Financial Accounting for Management, Pearson Education, New Delhi.2012.
- 2. H. Craig Peterson & W. Cris Lewis, Managerial Economics, Pearson, 2012.
- 3. Lipsey & Chrystel, Economics, Oxford University Press, 2012
- 5. Domnick Salvatore: Managerial Economics in a Global Economy, Thomson, 2012.
- 6. Narayanaswamy: Financial Accounting—A Managerial Perspective, Pearson, 2012.
- 7. S.N.Maheswari & S.K. Maheswari, Financial Accounting, Vikas, 2012.
- 8. Truet and Truet: Managerial Economics: Analysis, Problems and Cases, Wiley, 2012.
- 9. Dwivedi: Managerial Economics, Vikas, 2012.
- 10. Shailaja & Usha : MEFA, University Press, 2012.
- 11. Aryasri: Managerial Economics and Financial Analysis, TMH, 2012.
- 12. Vijay Kumar & Appa Rao, Managerial Economics & Financial Analysis, Cengage 2011.
- 13. J. V. Prabhakar Rao & P.V. Rao, Managerial Economics & Financial Analysis, Maruthi Publishers, 2011.

Outcomes:

At the end of the course, the student will

 Understand the market dynamics namely, demand and supply, demand forecasting, elasticity of demand and supply, pricing methods and pricing in different market structures.

- Gain an insight into how production function is carried out to achieve least cost combination of inputs and cost analysis
- Develop an understanding of
- Analyse how capital budgeting decisions are carried out
- Understand the framework for both manual and computerised accounting process
- Know how to analyse and interpret the financial statements through ratio analysis.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-II Sem	L	T/P/D	С
	4	-/-/-	4

(A60512) WEB TECHNOLOGIES

Objectives:

- To introduce PHP language for server side scripting
- To introduce XML and processing of XML Data with Java
- To introduce Server side programming with Java Servlets and JSP
- To introduce Client side scripting with Javascript and AJAX.

UNIT- I

Introduction to PHP: Declaring variables, data types, arrays, strings, operators, expressions, control structures, functions, Reading data from web form controls like text boxes, radio buttons, lists etc., Handling File Uploads, Connecting to database (MySQL as reference), executing simple queries, handling results, Handling sessions and cookies

File Handling in PHP: File operations like opening, closing, reading, writing, appending, deleting etc. on text and binary files, listing directories

UNIT- II

XML: Introduction to XML, Defining XML tags, their attributes and values, Document Type Definition, XML Schemas, Document Object Model, XHTML

Parsing XML Data - DOM and SAX Parsers in java.

UNIT- III

Introduction to Servlets: Common Gateway Interface (CGI), Lifecycle of a Servlet, deploying a servlet, The Servlet API, Reading Servlet parameters, Reading Initialization parameters, Handling Http Request & Responses, Using Cookies and Sessions, connecting to a database using JDBC.

UNIT- IV

Introduction to JSP: The Anatomy of a JSP Page, JSP Processing, Declarations, Directives, Expressions, Code Snippets, implicit objects, Using Beans in JSP Pages, Using Cookies and session for session tracking, connecting to database in JSP.

UNIT- V

Client side Scripting: Introduction to Javascript: Javascript language - declaring variables, scope of variables, functions, event handlers (onclick, onsubmit etc.), Document Object Model, Form validation.

Simple AJAX application.

TEXT BOOKS:

- 1. Web Technologies, Uttam K Roy, Oxford University Press
- 2. The Complete Reference PHP Steven Holzner, Tata McGraw-Hill **REFERENCE BOOKS**:
- 1. Web Programming, building internet applications, Chris Bates 2nd edition, Wiley Dreamtech
- 2. Java Server Pages Hans Bergsten, SPD O'Reilly
- 3. Java Script, D.Flanagan, O'Reilly,SPD.
- 4. Beginning Web Programming-Jon Duckett WROX.
- 5. Programming world wide web, R.W.Sebesta, Fourth Edition, Pearson.
- 6. Internet and World Wide Web How to program, Dietel and Nieto, Pearson.

- gain knowledge of client side scripting, validation of forms and AJAX programming
- have understanding of server side scripting with PHP language
- have understanding of what is XML and how to parse and use XML
 Data with Java
- To introduce Server side programming with Java Servlets and JSP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-II Sem	L	T/P/D	С
	-	-/3/-	2

(A60591) CASE TOOLS and WEB TECHNOLOGIES LAB CASE TOOLS LAB

Objectives:

- Understand how UML supports the entire OOAD process.
- Become familiar with all phases of OOAD.
- Understand different software testing tools and their features

I. Students are divided into batches of 5 each and each batch has to draw the following diagrams using UML for an ATM system whose description is given below.

UML diagrams to be developed are:

- 1. Use Case Diagram.
- 2. Class Diagram.
- 3. Sequence Diagram.
- 4. Collaboration Diagram.
- 5. State Diagram
- 6. Activity Diagram.
- 7. Component Diagram
- 8. Deployment Diagram.
- 9. Test Design.

Description for an ATM System

The software to be designed will control a simulated automated teller machine (ATM) having a magnetic stripe reader for reading an ATM card, a customer console (keyboard and display) for interaction with the customer, a slot for depositing envelopes, a dispenser for cash (in multiples of Rs. 100, Rs. 500 and Rs. 1000), a printer for printing customer receipts, and a key-operated switch to allow an operator to start or stop the machine. The ATM will communicate with the bank's computer over an appropriate communication link. (The software on the latter is not part of the requirements for this problem.)

The ATM will service one customer at a time. A customer will be required to insert an ATM card and enter a personal identification number (PIN) - both of which will be sent to the bank for validation as part of each transaction. The customer will then be able to perform one or more transactions. The card will be retained in the machine until the customer indicates that he/she

desires no further transactions, at which point it will be returned - except as noted below.

The ATM must be able to provide the following services to the customer:

- A customer must be able to make a cash withdrawal from any suitable account linked to the card, in multiples of Rs. 100 or Rs. 500 or Rs. 1000. Approval must be obtained from the bank before cash is dispensed.
- 2. A customer must be able to make a deposit to any account linked to the card, consisting of cash and/or checks in an envelope. The customer will enter the amount of the deposit into the ATM, subject to manual verification when the envelope is removed from the machine by an operator. Approval must be obtained from the bank before physically accepting the envelope.
- A customer must be able to make a transfer of money between any two accounts linked to the card.
- 4. A customer must be able to make a balance inquiry of any account linked to the card.
- 5. A customer must be able to abort a transaction in progress by pressing the Cancel key instead of responding to a request from the machine.

The ATM will communicate each transaction to the bank and obtain verification that it was allowed by the bank. Ordinarily, a transaction will be considered complete by the bank once it has been approved. In the case of a deposit, a second message will be sent to the bank indicating that the customer has deposited the envelope. (If the customer fails to deposit the envelope within the timeout period, or presses cancel instead, no second message will be sent to the bank and the deposit will not be credited to the customer.)

If the bank determines that the customer's PIN is invalid, the customer will be required to re-enter the PIN before a transaction can proceed. If the customer is unable to successfully enter the PIN after three tries, the card will be permanently retained by the machine, and the customer will have to contact the bank to get it back.

If a transaction fails for any reason other than an invalid PIN, the ATM will display an explanation of the problem, and will then ask the customer whether he/she wants to do another transaction.

The ATM will provide the customer with a printed receipt for each successful transaction

The ATM will have a key-operated switch that will allow an operator to start and stop the servicing of customers. After turning the switch to the "on" position, the operator will be required to verify and enter the total cash on hand. The machine can only be turned off when it is not servicing a customer.

When the switch is moved to the "off" position, the machine will shut down, so that the operator may remove deposit envelopes and reload the machine with cash, blank receipts, etc.

II. Study of any testing tool (e.g. Win runner)

III. Study of any web testing tool (e.g. Selenium)

IV. Study of any bug tracking tool (e.g. Bugzilla, bugbit)

V. Study of any test management tool (e.g. Test Director)

VI. Study of any open source-testing tool (e.g. Test Link)

Outcomes:

Ability to understand the history, cost of using and building CASE tools.

Ability to construct and evaluate hybrid CASE tools by integrating existing tools.

WEB TECHNOLOGIES LAB

Objectives:

To enable the student to program web applications using the following technologies HTML ,Javascript ,AJAX ,PHP ,Tomcat Server, Servlets ,JSP

Note:

- 1. Use LAMP Stack (Linux, Apache, MySQL and PHP) for the Lab Experiments. Though not mandatory, encourage the use of Eclipse platform wherever applicable
- 2. The list suggests the minimum program set. Hence, the concerned staff is requested to add more problems to the list as needed
- 1. Install the following on the local machine
- Apache Web Server (if not installed)
- Tomcat Application Server locally
- Install MySQL (if not installed)
- Install PHP and configure it to work with Apache web server and MySQL (if not already configured)
- 2. Write an HTML page including any required Javascript that takes a number from one text field in the range of 0 to 999 and shows it in another text field in words. If the number is out of range, it should show "out of range" and if it is not a number, it should show "not a number" message in the result box.
- 3. Write an HTML page that has one input, which can take multi-line

144 -

text and a submit button. Once the user clicks the submit button, it should show the number of characters, words and lines in the text entered using an alert message. Words are separated with white space and lines are separated with new line character.

- 4. Write an HTML page that contains a selection box with a list of 5 countries. When the user selects a country, its capital should be printed next to the list. Add CSS to customize the properties of the font of the capital (color, bold and font size).
- Create an XML document that contains 10 users information. Write a Java program, which takes User Id as input and returns the user details by taking the user information from the XML document using (a) DOM Parser and (b) SAX parser
- 6. Implement the following web applications using (a) PHP, (b) Servlets and (c) JSP:
- i. A user validation web application, where the user submits the login name and password to the server. The name and password are checked against the data already available in Database and if the data matches, a successful login page is returned. Otherwise a failure message is shown to the user.
- ii. Modify the above program to use an xml file instead of database.
- iii. Modify the above program to use AJAX to show the result on the same page below the submit button.
- iv. A simple calculator web application that takes two numbers and an operator (+, -, /, * and %) from an HTML page and returns the result page with the operation performed on the operands.
- v. Modify the above program such that it stores each query in a database and checks the database first for the result. If the query is already available in the DB, it returns the value that was previously computed (from DB) or it computes the result and returns it after storing the new query and result in DB.
- vi. A web application takes a name as input and on submit it shows a hello <name> page where <name> is taken from the request. It shows the start time at the right top corner of the page and provides a logout button. On clicking this button, it should show a logout page with Thank You <name> message with the duration of usage (hint: Use session to store name and time).
- vii. A web application that takes name and age from an HTML page. If the age is less than 18, it should send a page with "Hello <name>, you are not authorized to visit this site" message, where <name> should be replaced with the entered name. Otherwise it should send "Welcome <name> to this site" message.

viii. A web application for implementation:

The user is first served a login page which takes user's name and password. After submitting the details the server checks these values against the data from a database and takes the following decisions.

If name and password matches, serves a welcome page with user's full name.

If name matches and password doesn't match, then serves "password mismatch" page

If name is not found in the database, serves a registration page, where user's full name is asked and on submitting the full name, it stores, the login name, password and full name in the database (hint: use session for storing the submitted login name and password)

ix. A web application that lists all cookies stored in the browser on clicking "List Cookies" button. Add cookies if necessary.

TEXT BOOKS:

- 1. Web Technologies, Uttam K Roy, Oxford University Press
- 2. The Complete Reference PHP Steven Holzner, Tata McGraw-Hill **REFERENCE BOOKS**:
- 1. Web Programming, building internet applications, Chris Bates 2nd edition, Wiley Dreamtech
- 2. Java Server Pages Hans Bergsten, SPD O'Reilly
- 3. Java Script, D.Flanagan, O'Reilly, SPD.
- 4. Beginning Web Programming-Jon Duckett WROX.
- 5. Programming world wide web, R.W.Sebesta, Fourth Edition, Pearson.
- 6. Internet and World Wide Web How to program, Dietel and Nieto, Pearson.

- Use LAMP Stack for web applications
- Use Tomcat Server for Servlets and JSPs
- Write simple applications with Technologies like HTML, Javascript, AJAX, PHP, Servlets and JSPs
- Connect to Database and get results
- Parse XML files using Java (DOM and SAX parsers)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE-II Sem	
-----------------------------	--

L		C	
-	-/3/-	2	

ı.

T/D/D

~

(A60086) ADVANCED COMMUNICATION SKILLS (ACS) LAB

Introduction

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organise ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

Objectives:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

Syllabus:

The following course content to conduct the activities is prescribed for the Advanced Communication Skills (ACS) Lab:

- Activities on Fundamentals of Inter-personal Communication and Building Vocabulary - Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals -Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
- Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading & effective googling.
- Activities on Writing Skills Structure and presentation of different types of writing – letter writing/Resume writing/ e-correspondence/ Technical report writing/ Portfolio writing – planning for writing – improving one's writing.
- Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc.
- 5. Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through teleconference & video-conference and Mock Interviews.

Minimum Requirement:

The Advanced Communication Skills (ACS) Laboratory shall have the following infra-structural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed – 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

Prescribed Lab Manual: A book titled A Course Book of Advanced

Communication Skills (ACS) Lab published by Universities Press, Hyderabad.

Suggested Software:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dreamtech
- **TOEFL & GRE**(KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- The following software from 'train2success.com'
 - > Preparing for being Interviewed
 - Positive Thinking
 - Interviewing Skills
 - > Telephone Skills
 - > Time Management

Books Recommended:

- 1. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
- Advanced Communication Skills Laboratory Manual by Sudha Rani, D, Pearson Education 2011.
- Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- Business and Professional Communication: Keys for Workplace Excellence. Kelly M. Quintanilla & Shawn T. Wahl. Sage South Asia Edition. Sage Publications. 2011.
- The Basics of Communication: A Relational Perspective. Steve Duck & David T. McMahan. Sage South Asia Edition. Sage Publications. 2012.
- 6. English Vocabulary in Use series, Cambridge University Press 2008.
- 7. Management Shapers Series by Universities Press(India)Pvt Ltd., Himayatnagar, Hyderabad 2008.
- 8. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.

- 10. Handbook for Technical Writing by David A McMurrey & Joanne Buckely CENGAGE Learning 2008.
- 11. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 12. Master Public Speaking by Anne Nicholls, JAICO Publishing House, 2006.
- 13. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hil 2009.
- 14. Books on TOEFL/GRE/GMAT/CAT/ IELTS by Barron's/DELTA/ Cambridge University Press.
- 15. International English for Call Centres by Barry Tomalin and Suhashini Thomas, Macmillan Publishers, 2009.

DISTRIBUTION AND WEIGHTAGE OF MARKS:

Advanced Communication Skills Lab Practicals:

- 1. The practical examinations for the ACS Laboratory practice shall be conducted as per the University norms prescribed for the core engineering practical sessions.
- 2. For the English Language lab sessions, there shall be continuous evaluation during the year for 25 sessional marks and 50 End Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The End Examination shall be conducted by the teacher concerned, by inviting the External Examiner from outside. In case of the non-availability of the External Examiner, other teacher of the same department can act as the External Examiner.

Mini Project: As a part of Internal Evaluation

- 1. Seminar/ Professional Presentation
- 2. A Report on the same has to be prepared and presented.
- * Teachers may use their discretion to choose topics relevant and suitable to the needs of students.
- * Not more than two students to work on each mini project.
- * Students may be assessed by their performance both in oral presentation and written report.

- Accomplishment of sound vocabulary and its proper use contextually.
- Flair in Writing and felicity in written expression.
- Enhanced job prospects.
- Effective Speaking Abilities

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A70517) LINUX PROGRAMMING

Objectives:

- To understand and make effective use of Linux utilities and Shell scripting language (bash) to solve Problems.
- To implement in C some standard Linux utilities such as ls,mv,cp etc.using system calls.
- To develop the skills necessary for systems programming including file system programming, process and signal management, and interprocess communication.
- To develop the basic skills required to write network programs using Sockets.

UNIT- I

Linux Utilities-File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking commands, Filters, Text processing utilities and Backup utilities.

Sed-Scripts, Operation, Addresses, Commands, Applications, awk-Execution, Fields and Records, Scripts, Operation, Patterns, Actions, Associative Arrays, String and Mathematical functions, System commands in awk, Applications.

Shell programming with Bourne again shell(bash)- Introduction, shell responsibilities, pipes and Redirection, here documents, running a shell script, the shell as a programming language, shell meta characters, file name substitution, shell variables, command substitution, shell commands, the environment, quoting, test command, control structures, arithmetic in shell, shell script examples, interrupt processing, functions, debugging shell scripts.

UNIT- II

Files and Directories- File Concept, File types, File System Structure,file metadata-Inodes, kernel support for files, system calls for file I/O operationsopen, creat, read, write, close, lseek, dup2,file status information-stat family, file and record locking- fcntl function, file permissions - chmod, fchmod,file ownership-chown,lchown, fchown, links-soft links and hard links – symlink, link, unlink.

Directories-Creating, removing and changing Directories-mkdir, rmdir, chdir, obtaining current working directory-getcwd, Directory contents, Scanning Directories-opendir, readdir, closedir, rewinddir functions.

UNIT- III

Process - Process concept, Layout of a C program image in main

memory,Process environment-environment list, environment variables, getenv, setenv, Kernel support for process, process identification, process control - process creation, replacing a process image, waiting for a process, process termination, zombie process, orphan process, system call interface for process management-fork, vfork, exit, wait, waitpid, exec family, Process Groups, Sessions and Controlling Terminal, Differences between threads and processes.

Signals – Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions.

UNIT- IV

Interprocess Communication - Introduction to IPC, IPC between processes on a single computer system, IPC between processes on different systems, pipes-creation, IPC between related processes using unnamed pipes, FIFOscreation, IPC between unrelated processes using FIFOs(Named pipes), differences between unnamed and named pipes, popen and pclose library functions.

Message Queues- Kernel support for messages, APIs for message queues, client/server example.

Semaphores-Kernel support for semaphores, APIs for semaphores, file locking with semaphores.

UNIT- V

Shared Memory- Kernel support for shared memory, APIs for shared memory, shared memory example.

Sockets- Introduction to Berkeley Sockets, IPC over a network, Client-Server model, Socket address structures (Unix domain and Internet domain), Socket system calls for connection oriented protocol and connectionless protocol, example-client/server programs-Single Server-Client connection, Multiple simultaneous clients, Socket options-setsockopt and fcntl system calls, Comparison of IPC mechanisms.

TEXT BOOKS:

- 1. Unix System Programming using C++, T.Chan, PHI.
- 2. Unix Concepts and Applications, 4th Edition, Sumitabha Das, TMH.
- 3. Unix Network Programming, W.R.Stevens, PHI.

REFERENCE BOOKS:

- Beginning Linux Programming, 4th Edition, N.Matthew, R.Stones, Wrox, Wiley India Edition.
- Unix for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson.

- 3. System Programming with C and Unix, A.Hoover, Pearson.
- 4. Unix System Programming, Communication, Concurrency and Threads, K.A.Robbins and S.Robbins, Pearson Education.
- 5. Unix shell Programming, S.G.Kochan and P.Wood,3rd edition, Pearson Education.
- 6. Shell Scripting, S.Parker, Wiley India Pvt. Ltd.
- Advanced Programming in the Unix Environment,2nd edition, W.R.Stevens and S.A.Rago, Pearson Education.
- 8. Unix and Shell programming, B.A.Forouzan and R.F.Gilberg, Cengage Learning.
- 9. Linux System Programming, Robert Love, O'Reilly, SPD.
- 10. C Programming Language, Kernighan and Ritchie, PHI

- Work confidently in Linux environment.
- Work with shell script to automate different tasks as Linux administration.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A70530) DESIGN PATTERNS

Objectives:

- Understand the design patterns that are common in software applications.
- Understand how these patterns are related to Object Oriented design.

UNIT-I

Introduction: What Is a Design Pattern?, Design Patterns in Smalltalk MVC, Describing Design Patterns, The Catalog of Design Patterns, Organizing the Catalog, How Design Patterns Solve Design Problems, How to Select a Design Pattern, How to Use a Design Pattern.

UNIT-II

A Case Study: Designing a Document Editor: Design Problems, Document Structure, Formatting, Embellishing the User Interface, Supporting Multiple Look-and-Feel Standards, Supporting Multiple Window Systems, User Operations Spelling Checking and Hyphenation, Summary.

Creational Patterns: Abstract Factory, Builder, Factory Method, Prototype, Singleton, Discussion of Creational Patterns.

UNIT-III

Structural Pattern Part-I: Adapter, Bridge, Composite.

Structural Pattern Part-II: Decorator, açade, Flyweight, Proxy.

UNIT-IV

Behavioral Patterns Part-I: Chain of Responsibility, Command, Interpreter, Iterator.

Behavioral Patterns Part-II: Mediator, Memento, Observer.

UNIT-V

Behavioral Patterns Part-II (cont'd): State, Strategy, Template Method , Visitor, Discussion of Behavioral Patterns.

What to Expect from Design Patterns, A Brief History, The Pattern Community An Invitation, A Parting Thought.

TEXT BOOK:

1. Design Patterns By Erich Gamma, Pearson Education

REFERENCE BOOKS :

1. Pattern's in JAVA Vol-I By Mark Grand, Wiley DreamTech.

- 2. Pattern's in JAVA Vol-II By Mark Grand, Wiley DreamTech.
- 3. JAVA Enterprise Design Patterns Vol-III By Mark Grand, Wiley DreamTech.
- 4. Head First Design Patterns By Eric Freeman-Oreilly-spd.
- 5. Peeling Design Patterns, Prof. Meda Srinivasa Rao, Narsimha Karumanchi, CareerMonk Publications.
- 6. Design Patterns Explained By Alan Shalloway, Pearson Education.
- 7. Pattern Oriented Software Architecture, F.Buschmann&others, John Wiley & Sons.

- Ability to understand and apply common design patterns to incremental / iterative development.
- Ability to identify appropriate patterns for design of given problem.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem

D. Tech. CSE-I Sem	L		C
	4	-/-/-	4

T/D/D

~

(A70520) DATA WAREHOUSING AND DATA MINING

Objectives:

Study data warehouse principles and its working learn data mining concepts understand association rules mining. Discuss classification algorithms learn how data is grouped using clustering techniques.

UNIT-I

Data warehouse: Introduction to Data warehouse, Difference between operational database systems and data warehouses, Data warehouse Characteristics, Data warehouse Architecture and its Components, Extraction-Transformation-Loading, Logical(Multi-Dimensional), Data Modeling, Schema Design, Star and Snow-Flake Schema, Fact Consultation, Fact Table, Fully Addictive, Semi-Addictive, Non Addictive Measures; Fact-Less-Facts, Dimension Table Characteristics; OLAP Cube, OLAP Operations, OLAP Server Architecture-ROLAP, MOLAP and HOLAP.

UNIT-II

Introduction to Data Mining: Introduction, What is Data Mining, Definition, KDD, Challenges, Data Mining Tasks, Data Preprocessing, Data Cleaning, Missing data, Dimensionality Reduction, Feature Subset Selection, Discretization and Binaryzation, Data Transformation; Measures of Similarity and Dissimilarity- Basics.

UNIT-III

Association Rules: Problem Definition, Frequent Item Set Generation, The APRIORI Principle, Support and Confidence Measures, Association Rule Generation; APRIOIRI Algorithm, The Partition Algorithms, FP-Growth Algorithms, Compact Representation of Frequent Item Set- Maximal Frequent Item Set, Closed Frequent Item Set.

UNIT-IV

Classification: Problem Definition, General Approaches to solving a classification problem, Evaluation of Classifiers, Classification techniques, Decision Trees-Decision tree Construction, Methods for Expressing attribute test conditions, Measures for Selecting the Best Split, Algorithm for Decision tree Induction; Naive-Bayes Classifier, Bayesian Belief Networks; K- Nearest neighbor classification-Algorithm and Characteristics.

UNIT-V

Clustering: Problem Definition, Clustering Overview, Evaluation of Clustering Algorithms, Partitioning Clustering-K-Means Algorithm, K-Means Additional

issues, PAM Algorithm; Hierarchical Clustering-Agglomerative Methods and divisive methods, Basic Agglomerative Hierarchical Clustering Algorithm, Specific techniques, Key Issues in Hierarchical Clustering, Strengths and Weakness; Outlier Detection.

TEXT BOOKS:

- 1) Data Mining- Concepts and Techniques- Jiawei Han, Micheline Kamber, Morgan Kaufmann Publishers, Elsevier, 2 Edition, 2006.
- 2) Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education.

REFERENCE BOOKS:

- 1) Data Mining Techniques, Arun K Pujari, 3rd Edition, Universities Press.
- 2) Data Warehousing Fundamentals, Pualraj Ponnaiah, Wiley Student Edition.
- 3) The Data Warehouse Life Cycle Toolkit Ralph Kimball, Wiley Student Edition.
- 4) Data Mining, Vikaram Pudi, P Radha Krishna, Oxford University Press

- Student should be able to understand why the data warehouse in addition to database systems.
- Ability to perform the preprocessing of data and apply mining techniques on it.
- Ability to identify the association rules, classification and clusters in large data sets.
- Ability to solve real world problems in business and scientific information using data mining

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A70519) CLOUD COMPUTING

Objectives:

- To explain the evolving computer model called cloud computing.
- To introduce the various levels of services that can be achieved by cloud.
- To describe the security aspects in cloud.

UNIT- I

Systems Modeling, Clustering and Virtualization: Distributed System Models and Enabling Technologies, Computer Clusters for Scalable Parallel Computing, Virtual Machines and Virtualization of Clusters and Data centers.

UNIT- II

Foundations: Introduction to Cloud Computing, Migrating into a Cloud, Enriching the 'Integration as a Service' Paradigm for the Cloud Era, The Enterprise Cloud Computing Paradigm.

UNIT- III

Infrastructure as a Service (IAAS) & Platform and Software as a Service (PAAS / SAAS): Virtual machines provisioning and Migration services, On the Management of Virtual machines for Cloud Infrastructures, Enhancing Cloud Computing Environments using a cluster as a Service, Secure Distributed Data Storage in Cloud Computing.

Aneka, Comet Cloud, T-Systems', Workflow Engine for Clouds, Understanding Scientific Applications for Cloud Environments.

UNIT- IV

Monitoring, Management and Applications: An Architecture for Federated Cloud Computing, SLA Management in Cloud Computing, Performance Prediction for HPC on Clouds, Best Practices in Architecting Cloud Applications in the AWS cloud, Building Content Delivery networks using Clouds, Resource Cloud Mashups.

UNIT- V

Governance and Case Studies: Organizational Readiness and Change management in the Cloud age, Data Security in the Cloud, Legal Issues in Cloud computing, Achieving Production Readiness for Cloud Services.

TEXT BOOKS:

1. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.

2. Distributed and Cloud Computing, Kai Hwang, Geoffery C.Fox, Jack J.Dongarra, Elsevier, 2012.

REFERENCE BOOKS:

- 1. Cloud Computing : A Practical Approach, Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Tata McGraw Hill, rp2011.
- 2. Enterprise Cloud Computing, Gautam Shroff, Cambridge University Press, 2010.
- 3. Cloud Computing: Implementation, Management and Security, John W. Rittinghouse, James F.Ransome, CRC Press, rp2012.
- 4. Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, George Reese, O'Reilly, SPD, rp2011.
- Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, rp2011.

Outcomes:

• Ability to understand the virtualization and cloud computing concepts.

COMPUTER SCIENCE AND ENGINEERING 2013-14 159 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem

L. T/P/D С

-/-/-4 4

(A70540) SOFTWARE PROJECT MANAGEMENT

(Elective-I)

Objectives:

The main goal of software development projects is to create a software system with a predetermined functionality and quality in a given time frame and with given costs. For achieving this goal, models are required for determining target values and for continuously controlling these values. This course focuses on principles, techniques, methods & tools for model-based management of software projects, assurance of product quality and process adherence (quality assurance), as well as experience-based creation & improvement of models (process management). The goals of the course can be characterized as follows:

- Understanding the specific roles within a software organization as 1. related to project and process management
- 2. Understanding the basic infrastructure competences (e.g., process modeling and measurement)
- Understanding the basic steps of project planning, project 3. management, quality assurance, and process management and their relationships

UNIT- I

Conventional Software Management: The waterfall model, conventional software

Management performance. Evolution of Software Economics: Software Economics, pragmatic software cost estimation.

UNIT- II

Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections.

The old way and the new: The principles of conventional software engineering, principles of modern software management, transitioning to an iterative process.

UNIT- III

Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases.

Artifacts of the process: The artifact sets, Management artifacts, Engineering

artifacts, programmatic artifacts. Model based software architectures: A Management perspective and technical perspective.

UNIT- IV

Work Flows of the process: Software process workflows, Inter trans workflows.Checkpoints of the Process: Major Mile Stones, Minor Milestones, Periodic status assessments. Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule estimating, Interaction planning process, Pragmatic planning.

Project Organizations and Responsibilities: Line-of-Business Organizations,

Project Organizations, evolution of Organizations.

Process Automation : Automation Building Blocks, The Project Environment.

Project Control and Process instrumentation: The server care Metrics, Management indicators, quality indicators, life cycle expectations pragmatic Software Metrics, Metrics automation. Tailoring the Process: Process discriminants, Example.

Future Software Project Management: Modern Project Profiles Next generation

Software economics, modern Process transitions.

Case Study : The Command Center Processing and Display System-Replacement(CCPDS-R).

TEXT BOOKS:

- 1. Software Project Management, Walker Royce, Pearson Education.
- 2. Software Project Management, Bob Hughes & Mike Cotterell, fourth edition, Tata McGraw Hill.

REFERENCE BOOKS:

- 1. Applied Software Project Management, Andrew Stellman & Jennifer Greene, O'Reilly, 2006
- 2. Head First PMP, Jennifer Greene & Andrew Stellman, O'Reilly,2007
- 3. Software Engineering Project Managent, Richard H. Thayer & Edward Yourdon, second edition, Wiley India, 2004.
- 4. Agile Project Management, Jim Highsmith, Pearson education, 2004
- 5. The art of Project management, Scott Berkun, O'Reilly, 2005.
- 6. Software Project Management in Practice, Pankaj Jalote, Pearson Education,2002.

- Describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project.
- Compare and differentiate organization structures and project structures.
- Implement a project to manage project schedule, expenses and resources with the application of suitable project management tools.

COMPUTER SCIENCE AND ENGINEERING 2013-14 162 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

4 -/-/-

(A70532) IMAGE PROCESSING AND PATTERN RECOGNITION

(Elective - I)

Objectives:

- Adequate background knowledge about image processing and pattern recognition
- Practical knowledge and skills about image processing and pattern recognition tools
- Necessary knowledge to design and implement a prototype of an image processing and pattern recognition application.

UNIT - I

Fundamental steps of image processing, components of an image processing of system. The image model and image acquisition, sampling and quantization, relationship between pixels, distance functions, scanner.

Statistical and spatial operations, Intensity functions transformations, histogram processing, smoothing & sharpening – spatial filters Frequency domain filters, homomorphic filtering, image filtering & restoration. Inverse and weiner filtering, FIR weiner filter, Filtering using image transforms, smoothing splines and interpolation.

UNIT - II

Morphological and other area operations, basic morphological operations, opening and closing operations, dilation erosion, Hit or Miss transform, morphological algorithms, extension to grey scale images.

Segmentation and Edge detection region operations, basic edge detection, second order detection, crack edge detection, gradient operators, compass and Laplace operators, edge linking and boundary detection, thresholding, region based segmentation, segmentation by morphological watersheds.

UNIT -III

Image compression: Types and requirements, statistical compression, spatial compression, contour coding, quantizing compression, image data compression-predictive technique, pixel coding, transfer coding theory, lossy and lossless predictive type coding, Digital Image Water marking.

UNIT -IV

Representation and Description: Chain codes, Polygonal approximation, Signature Boundary Segments, Skeltons, Boundary Descriptors, Regional Descriptors, Relational Descriptors, Principal components for Description, Relational Descriptors

UNIT- V

Pattern Recognition Fundamentals: Basic Concepts of pattern recognition, Fundamental problems in pattern recognition system, design concepts and methodologies, example of automatic pattern recognition systems, a simple automatic pattern recognition model

Pattern classification: Pattern classification by distance function: Measures of similarity, Clustering criteria, K-means algorithm, Pattern classification by likelihood function: Pattern classification as a Statistical decision problem, Bayes classifier for normal patterns.

TEXT BOOKS

- 1. Digital Image Processing Third edition, Pearson Education, Rafael C. Gonzalez, Richard E. Woods.
- 2. Pattern recognition Principles: Julus T. Tou, and Rafel C. Gonzalez, Addision-Wesly Publishing Company.
- 3. Digital Image Processing, M.Anji Reddy, Y.Hari Shankar, BS Publications.

REFERENCE BOOKS:

- 1. Image Processing, Analysis and Machine Vision, Second Edition, Milan Sonka, Vaclav Hlavac and Roger Boyle. Thomson learning
- 2. Digital Image Processing William k. Pratl -John Wiley edition.
- 3. Fundamentals of digital image processing by A.K. Jain, PHI.
- 4. Pattern classification, Richard Duda, Hart and David strok John Wiley publishers.
- 5. Digital Image Processing, S.Jayaraman, S. Esakkirajan, T.Veerakumar, TMH.
- 6. Pattern Recognition, R.Shinghal, Oxford University Press.

- Ability to apply computer algorithms to practical problems.
- Ability to image segmentation, reconstruction and restoration.
- Ability to perform the classification of patterns

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A70536) MOBILE COMPUTING

(Elective – I)

Objectives:

- To make the student understand the concept of mobile computing paradigm, its novel applications and limitations.
- To understand the typical mobile networking infrastructure through a popular GSM protocol
- To understand the issues and solutions of various layers of mobile networks, namely MAC layer, Network Layer & Transport Layer
- To understand the database issues in mobile environments & data delivery models.
- To understand the ad hoc networks and related concepts.
- To understand the platforms and protocols used in mobile environment.

UNIT- I

Introduction: Mobile Communications, Mobile Computing – Paradigm, Promises/Novel Applications and Impediments and Architecture; Mobile and Handheld Devices, Limitations of Mobile and Handheld Devices.

GSM – Services, System Architecture, Radio Interfaces, Protocols, Localization, Calling, Handover, Security, New Data Services, GPRS, CSHSD, DECT.

unit –II

(Wireless) Medium Access Control (MAC): Motivation for a specialized MAC (Hidden and exposed terminals, Near and far terminals), SDMA, FDMA, TDMA, CDMA, Wireless LAN/(IEEE 802.11)

Mobile Network Layer: IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunneling and Encapsulation, Route Optimization, DHCP.

unit –III

Mobile Transport Layer: Conventional TCP/IP Protocols, Indirect TCP, Snooping TCP, Mobile TCP, Other Transport Layer Protocols for Mobile Networks.

Database Issues: Database Hoarding & Caching Techniques, Client-Server Computing & Adaptation, Transactional Models, Query processing, Data Recovery Process & QoS Issues.

UNIT- IV

Data Dissemination and Synchronization: Communications Asymmetry, Classification of Data Delivery Mechanisms, Data Dissemination, Broadcast Models, Selective Tuning and Indexing Methods, Data Synchronization – Introduction, Software, and Protocols

UNIT- V

Mobile Ad hoc Networks (MANETs): Introduction, Applications & Challenges of a MANET, Routing, Classification of Routing Algorithms, Algorithms such as DSR, AODV, DSDV, etc., Mobile Agents, Service Discovery.

Protocols and Platforms for Mobile Computing :WAP, Bluetooth, XML, J2ME, JavaCard, PalmOS, Windows CE, SymbianOS, Linux for Mobile Devices, Android.

TEXT BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Addison-Wesley, Second Edition, 2009.
- Raj Kamal, "Mobile Computing", Oxford University Press, 2007, ISBN: 0195686772

REFERENCE BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Addison-Wesley, Second Edition, 2004.
- 2. Stojmenovic and Cacute, "Handbook of Wireless Networks and Mobile Computing", Wiley, 2002, ISBN 0471419028.
- Reza Behravanfar, "Mobile Computing Principles: Designing and Developing Mobile Applications with UML and XML", ISBN: 0521817331, Cambridge University Press, Oct 2004,

- Able to think and develop new mobile application.
- Able to take any new technical issue related to this new paradigm and come up with a solution(s).
- Able to develop new ad hoc network applications and/or algorithms/ protocols.
- Able to understand & develop any existing or new protocol related to mobile environment

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A70529) COMPUTER GRAPHICS

(Elective-I)

Objectives:

- To make students understand about fundamentals of Graphics to enable them to design animated scenes for virtual object creations.
- To make the student present the content graphically.

UNIT- I

Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices

Output primitives: Points and lines, line drawing algorithms, mid-point circle and ellipse algorithms. Filled area primitives: Scan line polygon fill algorithm, boundary-fill and flood-fill algorithms.

UNIT- II

2-D Geometrical transforms: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems.

2-D Viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland and Cyrus-beck line clipping algorithms, Sutherland –Hodgeman polygon clipping algorithm.

UNIT- III

3-D Object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-spline curves, Bezier and B-spline surfaces, sweep representations, octrees BSP Trees,

3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations, 3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT- IV

Visible surface detection methods: Classification, back-face detection, depth-buffer, scan-line, depth sorting, BSP-tree methods, area sub-division and octree methods

Illumination Models and Surface rendering Methods: Basic illumination

models, polygon rendering methods

UNIT- V

Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications

TEXT BOOKS:

- 1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson education.
- 2. "Computer Graphics Second edition", Zhigand xiang, Roy Plastock, Schaum's outlines, Tata Mc Graw hill edition.

REFERENCE BOOKS:

- 1. "Computer Graphics Principles & practice", second edition in C, Foley, VanDam, Feiner and Hughes, Pearson Education.
- "Procedural elements for Computer Graphics", David F Rogers, Tata Mc Graw hill, 2nd edition.
- 3. "Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
- 4. "Principles of Computer Graphics", Shalini, Govil-Pai, Springer.
- 5. "Computer Graphics", Steven Harrington, TMH
- 6. Computer Graphics, F.S.Hill, S.M.Kelley, PHI.
- 7. Computer Graphics, P.Shirley, Steve Marschner & Others, Cengage Learning.
- 8. Computer Graphics & Animation, M.C. Trivedi, Jaico Publishing House.
- 9. An Integrated Introduction to Computer Graphics and Geometric Modelling, R.Goldman, CRC Press, Taylor&Francis Group.
- 10. Computer Graphics, Rajesh K.Maurya, Wiley India.

- Students can animate scenes entertainment.
- Will be able work in computer aided design for content presentation..
- Better analogy data with pictorial representation.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A70352) OPERATIONS RESEARCH

(Elective-I)

Objectives:

- To introduce the methods of Operations Research.
- Emphasize the mathematical procedures of non linear programming search techniques.
- Introduce advanced topics such as Probabilistic models and dynamic programming.

UNIT – I

Development – Definition– Characteristics and Phases – Types of models – Operations Research models – applications.

Allocation: Linear Programming Problem Formulation – Graphical solution – Simplex method – Artificial variables techniques: Two–phase method, Big-M method.

UNIT – II

Transportation Problem – Formulation – Optimal solution, unbalanced transportation problem – Degeneracy.

Assignment problem – Formulation – Optimal solution - Variants of Assignment Problem- Traveling Salesman problem.

UNIT – III

Sequencing – Introduction – Flow –Shop sequencing – n jobs through two machines – n jobs through three machines – Job shop sequencing – two jobs through 'm' machines

Replacement: Introduction – Replacement of items that deteriorate with time – when money value is not counted and counted – Replacement of items that fail completely- Group Replacement.2

UNIT – IV

Theory of Games: Introduction – Terminology– Solution of games with saddle points and without saddle points- 2×2 games – dominance principle – $m \times 2 \& 2 \times n$ games -graphical method.

Inventory: Introduction – Single item, Deterministic models – Purchase inventory models with one price break and multiple price breaks –Stochastic models – demand may be discrete variable or continuous variable – Single Period model and no setup cost.

UNIT – V

Waiting Lines: Introduction – Terminology-Single Channel – Poisson arrivals and Exponential Service times – with infinite population and finite population models– Multichannel – Poisson arrivals and exponential service times with infinite population.

Dynamic Programming: Introduction – Terminology- Bellman's Principle of Optimality – Applications of dynamic programming- shortest path problem – linear programming problem.

Simulation: Introduction, Definition, types of simulation models, Steps involved in the simulation process- Advantages and disadvantages-applications of simulation to queuing and inventory.

TEXT BOOK :

- 1. Operations Research /J.K.Sharma 4e. /MacMilan
- 2. Introduction to O.R/Hillier & Libermann/TMH

REFERENCE BOOKS :

- 1. Introduction to O.R /Taha/PHI
- 2. Operations Research/ NVS Raju/ SMS Education/3rd Revised Edition
- 3. Operations Research /A.M.Natarajan, P.Balasubramaniam, A. Tamilarasi/Pearson Education.
- 4. Operations Research / Wagner/ PHI Publications.
- 5. Operations Research/M.V. Durga Prasad, K, Vijaya Kumar Reddy, J. Suresh Kumar/ Cengage Learning.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A70534) MACHINE LEARNING

(Elective – II)

Objectives:

- To be able to formulate machine learning problems corresponding to different applications.
- To understand a range of machine learning algorithms along with their strengths and weaknesses.
- To understand the basic theory underlying machine learning.

UNIT – I

Introduction: An illustrative learning task, and a few approaches to it. What is known from algorithms? Theory, Experiment. Biology. Psychology.

Concept Learning: Version spaces. Inductive Bias. Active queries. Mistake bound/ PAC model. basic results. Overview of issues regarding data sources, success criteria.

unit –II

Decision Tree Learning: - Minimum Description Length Principle. Occam's razor. Learning with active queries

Neural Network Learning: Perceptions and gradient descent back propagation.

UNIT –III

Sample Complexity and Over fitting: Errors in estimating means. Cross Validation and jackknifing VC dimension. Irrelevant features: Multiplicative rules for weight tuning.

Bayesian Approaches: The basics Expectation Maximization. Hidden Markov Models

UNIT—IV

Instance-based Techniques: Lazy vs. eager generalization. K nearest neighbor, case- based reasoning.

UNIT-V

Genetic Algorithms: Different search methods for induction - Explanationbased Learning: using prior knowledge to reduce sample complexity.

TEXT BOOKS:

1. Tom Michel, Machine Learning, McGraw Hill, 1997

2. Trevor Has tie, Robert Tibshirani & Jerome Friedman. The Elements of Statically Learning, Springer Verlag, 2001

REFERENCE BOOKS:

- 1. Machine Learning Methods in the Environmental Sciences, Neural Networks, William W Hsieh, Cambridge Univ Press.
- 2. Richard o. Duda, Peter E. Hart and David G. Stork, pattern classification, John Wiley & Sons Inc.,2001
- Chris Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995

- Student should be able to understand the basic concepts such as decision trees and neural networks.
- Ability to formulate machine learning techniques to respective problems.
- Apply machine learning algorithms to solve problems of moderate complexity

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

		-
4	-/-/-	4

(A70539) SOFT COMPUTING

(Elective – II)

Objectives:

 To give students knowledge of soft computing theories fundamentals, i.e. Fundamentals of artificial and neural networks, fuzzy sets and fuzzy logic and genetic algorithms.

UNIT-I

Al Problems and Search: Al problems, Techniques, Problem Spaces and Search, Heuristic Search Techniques- Generate and Test, Hill Climbing, Best First Search Problem reduction, Constraint Satisfaction and Means End Analysis. Approaches to Knowledge Representation- Using Predicate Logic and Rules.

UNIT-II

Artificial Neural Networks: Introduction, Basic models of ANN, important terminologies, Supervised Learning Networks, Perceptron Networks, Adaptive Linear Neuron, Backpropagation Network. Associative Memory Networks. Traing Algorithms for pattern association, BAM and Hopfield Networks.

UNIT-III

Unsupervised Learning Network- Introduction, Fixed Weight Competitive Nets, Maxnet, Hamming Network, Kohonen Self-Organizing Feature Maps, Learning Vector Quantization, Counter Propagation Networks, Adaptive Resonance Theory Networks. Special Networks-Introduction to various networks.

UNIT-IV

Introduction to Classical Sets (crisp Sets)and Fuzzy Sets- operations and Fuzzy sets. Classical Relations - and Fuzzy Relations- Cardinality, Operations, Properties and composition. Tolerance and equivalence relations.

Membership functions- Features, Fuzzification, membership value assignments, Defuzzification.

UNIT-V

Fuzzy Arithmetic and Fuzzy Measures, Fuzzy Rule Base and Approximate Reasoning Fuzzy Decision making

Fuzzy Logic Control Systems. Genetic Algorithm- Introduction and basic operators and terminology. Applications: Optimization of TSP, Internet Search Technique

TEXT BOOKS:

- 1. Principles of Soft Computing- S N Sivanandam, S N Deepa, Wiley India, 2007.
- 2. Soft Computing and Intelligent System Design -Fakhreddine O Karray, Clarence D Silva, Pearson Edition, 2004.

REFERENCE BOOKS:

- 1. Artificial Intelligence and SoftComputing- Behavioural and Cognitive Modelling of the Human Brain- Amit Konar, CRC press, Taylor and Francis Group.
- 2. Artificial Intelligence Elaine Rich and Kevin Knight, TMH, 1991, rp2008.
- 3. Artificial Intelligence Patric Henry Winston Third Edition, Pearson Education.
- 4. A first course in Fuzzy Logic-Hung T Nguyen and Elbert A Walker, CRC. Press Taylor and Francis Group.
- 5. Artificial Intelligence and Intelligent Systems, N.P.Padhy, Oxford Univ. Press.

- Student can able to building intelligent systems through soft computing techniques.
- Student should be able to understand the concept of artificial neural networks, fuzzy arithmetic and fuzzy logic with their day to day applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year	B.Tech.	CSE-I Sem	
---------	---------	-----------	--

L T/P/D C 4 -/-/- 4

4 -/-/-

(A70533) INFORMATION RETRIEVAL SYSTEMS

(Elective – II)

Objectives:

- To learn the different models for information storage and retrieval
- To learn about the various retrieval utilities
- To understand indexing and querying in information retrieval systems
- To expose the students to the notions of structured and semi structured data
- To learn about web search

UNIT-I

Introduction

Retrieval Strategies: Vector space model, Probabilistic retrieval strategies: Simple term weights, Non binary independence model Language Models.

UNIT-II

Retrieval Utilities: Relevance feedback, Clustering, N-grams, Regression analysis, Thesauri.

UNIT-III

Retrieval Utilities: Semantic networks, Parsing.

Cross-Language Information Retrieval: Introduction, Crossing the language barrier.

UNIT-IV

Efficiency: Inverted index, Query processing, Signature files, Duplicate document detection

UNIT-V

Integrating Structured Data and Text: A Historical progression, Information retrieval as a relational application, Semi-structured search using a relational schema.

Distributed Information Retrieval: A Theoretical model of distributed retrieval, Web search.

TEXT BOOK:

 David A. Grossman, Ophir Frieder, Information Retrieval – Algorithms and Heuristics, Springer, 2nd Edition (Distributed by Universities Press), 2004.

REFERENCE BOOKS:

- 1. Gerald J Kowalski, Mark T Maybury. Information Storage and Retrieval Systems, Springer, 2000.
- 2. Soumen Chakrabarti, Mining the Web : Discovering Knowledge from Hypertext Data, Morgan-Kaufmann Publishers, 2002.
- 3. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, An Introduction to Information Retrieval, Cambridge University Press, Cambridge, England, 2009.

- Possess the ability to store and retrieve textual documents using appropriate models.
- Possess the ability to use the various retrieval utilities for improving search.
- Possess an understanding of indexing and compressing documents to improve space and time efficiency.
- Possess the skill to formulate SQL like queries for unstructured data.
- Understand issues in web search.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem	L	T/P/D	С
	4	-/-/-	4

(A70526) ARTIFICIAL INTELLIGENCE

(ELECTIVE- II)

Objectives:

- To learn the difference between optimal reasoning vs human like reasoning
- To understand the notions of state space representation, exhaustive search, heuristic search along with the time and space complexities
- To learn different knowledge representation techniques
- To understand the applications of AI: namely Game Playing, Theorem Proving, Expert Systems, Machine Learning and Natural Language Processing

UNIT-I

Introduction, History, Intelligent Systems, Foundations of AI, Sub areas of AI, Applications.

Problem Solving - State-Space Search and Control Strategies: Introduction, General Problem Solving, Characteristics of Problem, Exhaustive Searches, Heuristic Search Techniques, Iterative-Deepening A*, Constraint Satisfaction.

Game Playing, Bounded Look-ahead Strategy and use of Evaluation Functions, Alpha-Beta Pruning

UNIT-II

Logic Concepts and Logic Programming: Introduction, Propositional Calculus, Propositional Logic, Natural Deduction System, Axiomatic System, Semantic Tableau System in Propositional Logic, Resolution Refutation in Propositional Logic, Predicate Logic, Logic Programming.

Knowledge Representation: Introduction, Approaches to Knowledge Representation, Knowledge Representation using Semantic Network, Extended Semantic Networks for KR, Knowledge Representation using Frames.

UNIT-III

Expert System and Applications: Introduction, Phases in Building Expert Systems, Expert System Architecture, Expert Systems Vs Traditional Systems, Truth Maintenance Systems, Application of Expert Systems, List of Shells and Tools.

Uncertainty Measure - Probability Theory: Introduction, Probability Theory, Bayesian Belief Networks, Certainty Factor Theory, Dempster-Shafer Theory.

UNIT-IV

Machine-Learning Paradigms: Introduction. Machine Learning Systems. Supervised and Unsupervised Learning. Inductive Learning. Learning Decision Trees (Text Book 2), Deductive Learning. Clustering, Support Vector Machines.

Artificial Neural Networks: Introduction, Artificial Neural Networks, Single-Layer Feed-Forward Networks, Multi-Layer Feed-Forward Networks, Radial-Basis Function Networks, Design Issues of Artificial Neural Networks, Recurrent Networks.

UNIT-V

Advanced Knowledge Representation Techniques: Case Grammars, Semantic Web

Natural Language Processing: Introduction, Sentence Analysis Phases, Grammars and Parsers, Types of Parsers, Semantic Analysis, Universal Networking Knowledge.

TEXT BOOKS:

- 1. Saroj Kaushik. Artificial Intelligence. Cengage Learning, 2011.
- 2. Russell, Norvig: Artificial intelligence, A Modern Approach, Pearson Education, Second Edition. 2004.

REFERENCE BOOK:

1. Rich, Knight, Nair: Artificial intelligence, Tata McGraw Hill, Third Edition 2009.

- Possess the ability to formulate an efficient problem space for a problem expressed in English.
- Possess the ability to select a search algorithm for a problem and characterize its time and space complexities.
- Possess the skill for representing knowledge using the appropriate technique.
- Possess the ability to apply AI techniques to solve problems of Game Playing, Expert Systems, Machine Learning and Natural Language Processing.

COMPUTER SCIENCE AND ENGINEERING 2013-14 178 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem

L. T/P/D С 4 -/-/-4

(A70528) COMPUTER FORENSICS

(Elective-II)

Objectives:

- A brief explanation of the objective is to provide digital evidences which are obtained from digital media.
- In order to understand the objectives of computer forensics, first of all, people have to recognize the different roles computer plays in a certain crime.
- According to a snippet from the United States Security Service, the functions computer has in different kinds of crimes.

UNIT – I

Computer Forensics Fundamentals: What is Computer Forensics?, Use of Computer Forensics in Law Enforcement. Computer Forensics Assistance to Human Resources/Employment Proceedings, Computer Forensics Services, Benefits of Professional Forensics Methodology, Steps taken by **Computer Forensics Specialists**

Types of Computer Forensics Technology: Types of Military Computer Forensic Technology, Types of Law Enforcement - Computer Forensic Technology – Types of Business Computer Forensic Technology

Computer Forensics Evidence and Capture: Data Recovery Defined -Data Back-up and Recovery – The Role of Back-up in Data Recovery – The **Data-Recovery Solution**

UNIT – II

Evidence Collection and Data Seizure: Why Collect Evidence? Collection Options – Obstacles – Types of Evidence – The Rules of Evidence – Volatile Evidence - General Procedure - Collection and Archiving - Methods of Collection – Artifacts – Collection Steps – Controlling Contamination: The Chain of Custody

Duplication and Preservation of Digital Evidence: Preserving the Digital Crime Scene - Computer Evidence Processing Steps - Legal Aspects of Collecting and Preserving Computer Forensic Evidence

Computer Image Verification and Authentication: Special Needs of Evidential Authentication – Practical Consideration – Practical Implementation UNIT - III

Computer Forensics analysis and validation: Determining what data to collect and analyze, validating forensic data, addressing data-hiding techniques, performing remote acquisitions

Network Forensics: Network forensics overview, performing live acquisitions, developing standard procedures for network forensics, using

network tools, examining the honeynet project.

Processing Crime and Incident Scenes: Identifying digital evidence, collecting evidence in private-sector incident scenes, processing law enforcement crime scenes, preparing for a search, securing a computer incident or crime scene, seizing digital evidence at the scene, storing digital evidence, obtaining a digital hash, reviewing a case

UNIT – IV

Current Computer Forensic tools: evaluating computer forensic tool needs, computer forensics software tools, computer forensics hardware tools, validating and testing forensics software

E-Mail Investigations: Exploring the role of e-mail in investigation, exploring the roles of the client and server in e-mail, investigating e-mail crimes and violations, understanding e-mail servers, using specialized e-mail forensic tools

Cell phone and mobile device forensics: Understanding mobile device forensics, understanding acquisition procedures for cell phones and mobile devices.

UNIT – V

Working with Windows and DOS Systems: understanding file systems, exploring Microsoft File Structures, Examining NTFS disks, Understanding whole disk encryption, windows registry, Microsoft startup tasks, MS-DOS startup tasks, virtual machines.

TEXT BOOKS:

- 1. Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, New Delhi.
- 2. Computer Forensics and Investigations by Nelson, Phillips Enfinger, Steuart, CENGAGE Learning

REFERENCE BOOKS:

- 1. Real Digital Forensics by Keith J. Jones, Richard Bejtlich, Curtis W. Rose, Addison- Wesley Pearson Education
- 2. Forensic Compiling, A Tractitioneris Guide by Tony Sammes and Brian Jenkinson, Springer International edition.
- 3. Computer Evidence Collection & Presentation by Christopher L.T. Brown, Firewall Media.
- 4. Homeland Security, Techniques & Technologies by Jesus Mena, Firewall Media.
- Software Forensics Collecting Evidence from the Scene of a Digital Crime by Robert M.Slade, TMH 2005
- 6. Windows Forensics by Chad Steel, Wiley India Edition.

- Students will understand the usage of computers in forensic, and how to use various forensic tools for a wide variety of investigations.
- It gives an opportunity to students to continue their zeal in research in computer forensics.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem

CSE-I Sem L T/P/D C - -/3/- 2

(A70596) LINUX PROGRAMMING LAB

Objectives:

- To write shell scripts to solve problems.
- To implement some standard Linux utilities such as ls,cp etc using system calls.
- To develop network-based applications using C.

List of sample problems:

Note: Use Bash for Shell scripts.

- 1. Write a shell script that accepts a file name, starting and ending line numbers as arguments and displays all the lines between the given line numbers.
- 2. Write a shell script that deletes all lines containing a specified word in one or more files supplied as arguments to it.
- 3. Write a shell script that displays a list of all the files in the current directory to which the user has read, write and execute permissions.
- 4. Write a shell script that receives any number of file names as arguments checks if every argument supplied is a file or a directory and reports accordingly. Whenever the argument is a file, the number of lines on it is also reported.
- 5. Write a shell script that accepts a list of file names as its arguments, counts and reports the occurrence of each word that is present in the first argument file on other argument files.
- 6. Write a shell script to list all of the directory files in a directory.
- 7. Write a shell script to find factorial of a given integer.
- 8. Write an awk script to count the number of lines in a file that do not contain vowels.
- 9. Write an awk script to find the number of characters, words and lines in a file.
- 10. Write a C program that makes a copy of a file using standard I/O and system calls.
- Implement in C the following Linux commands using System calls

 a). cat
 b) mv
- 12. Write a C program to list files in a directory.
- 13. Write a C program to emulate the Unix Is –I command.
- 14. Write a C program to list for every file in a directory, its inode number and file name.
- 15. Write a C program that redirects standard output to a file.Ex: ls > f1.
- 16. Write a C program to create a child process and allow the parent to display "parent" and the child to display "child" on the screen.

- 17. Write a C program to create a Zombie process.
- 18. Write a C program that illustrates how an orphan is created.
- 19. Write a C program that illustrates how to execute two commands concurrently with a command pipe. Ex:- Is -I | sort
- 20. Write C programs that illustrate communication between two unrelated processes using named pipe(FIFO File).
- 21. Write a C program in which a parent writes a message to a pipe and the child reads the message.
- 22. Write a C program (sender.c) to create a message queue with read and write permissions to write 3 messages to it with different priority numbers.
- 23. Write a C program (receiver.c) that receives the messages (from the above message queue as specified in (22)) and displays them.
- 24. Write a C program that illustrates suspending and resuming processes using signals.
- 25. Write Client and Server programs in C for connection oriented communication between Server and Client processes using Unix Domain sockets to perform the following: Client process sends a message to the Server Process.The Server receives the message,reverses it and sends it back to the Client.The Client will then display the message to the standard output device.
- 26. Write Client and Server programs in C for connection oriented communication between Server and Client processes using Internet Domain sockets to perform the following: Client process sends a message to the Server Process. The Server receives the message reverses it and sends it back to the Client The

receives the message, reverses it and sends it back to the Client. The Client will then display the message to the standard output device. Write C programs to perform the following:

One process creates a shared memory segment and writes a message("Hello") into it. Another process opens the shared memory segment and reads the message(ie. "Hello"). It will then display the message("Hello") to standard output device.

TEXT BOOKS:

27.

- 1. Beginning Linux Programming, 4th Edition, N.Matthew, R.Stones,Wrox, Wiley India Edition.
- 2. Advanced Unix Programming, N.B.Venkateswarulu, BS Publications.
- 3. Unix and Shell Programming, M.G. Venkatesh Murthy, Pearson Education.
- 4. Unix Shells by Example, 4th Edition, Ellie Quigley, Pearson Education.
- 5. Sed and Awk, O.Dougherty&A.Robbins,2nd edition, SPD.

- Ability to understand the Linux environment
- Ability to perform the file management and multiple tasks using shell scripts in Linux environment

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-I Sem

Sem L T/P/D C - -/3/- 2

- -/3/-(A70595) DATA WAREHOUSING AND MINING LAB

Objectives:

Learn how to build a data warehouse and query it (using open source tools like Pentaho Data Integration and Pentaho Business Analytics), Learn to perform data mining tasks using a data mining toolkit (such as open source WEKA), Understand the data sets and data preprocessing, Demonstrate the working of algorithms for data mining tasks such association rule mining, classification, clustering and regression, Exercise the data mining techniques with varied input values for different parameters.

UNIT-1. Build Data Warehouse and Explore WEKA

- A. Build a Data Warehouse/Data Mart (using open source tools like Pentaho Data Integration tool, Pentoaho Business Analytics; or other data warehouse tools like Microsoft-SSIS, Informatica, Business Objects, etc.).
- (i). Identify source tables and populate sample data
- (ii). Design multi-dimensional data models namely Star, snowflake and Fact constellation schemas for any one enterprise (ex. Banking, Insurance, Finance, Healthcare, Manufacturing, Automobile, etc.).
- (iii). Write ETL scripts and implement using data warehouse tools
- (iv). Perform various OLAP operations such slice, dice, roll up, drill up and pivot
- (v). Explore visualization features of the tool for analysis like identifying trends etc.
- B. Explore WEKA Data Mining/Machine Learning Toolkit
- (i). Downloading and/or installation of WEKA data mining toolkit,
- (ii). Understand the features of WEKA toolkit such as Explorer, Knowledge Flow interface, Experimenter, command-line interface.
- (iii). Navigate the options available in the WEKA (ex. Select attributes panel, Preprocess panel, Classify panel, Cluster panel, Associate panel and Visualize panel)
- (iv). Study the arff file format
- (v). Explore the available data sets in WEKA.
- (vi). Load a data set (ex. Weather dataset, Iris dataset, etc.)
- (vii). Load each dataset and observe the following:
- i. List the attribute names and they types

- ii. Number of records in each dataset
- iii. Identify the class attribute (if any)
- iv. Plot Histogram
- v. Determine the number of records for each class.
- vi. Visualize the data in various dimensions
- Unit 2 Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets
- A. Explore various options available in Weka for preprocessing data and apply (like Discretization Filters, Resample filter, etc.) on each dataset
- B. Load each dataset into Weka and run Aprori algorithm with different support and confidence values. Study the rules generated.
- C. Apply different discretization filters on numerical attributes and run the Apriori association rule algorithm. Study the rules generated. Derive interesting insights and observe the effect of discretization in the rule generation process.

Unit 3 Demonstrate performing classification on data sets

- A. Load each dataset into Weka and run Id3, J48 classification algorithm. Study the classifier output. Compute entropy values, Kappa statistic.
- B. Extract if-then rules from the decision tree generated by the classifier, Observe the confusion matrix and derive Accuracy, F-measure, TPrate, FPrate, Precision and Recall values. Apply cross-validation strategy with various fold levels and compare the accuracy results.
- C. Load each dataset into Weka and perform Naïve-bayes classification and k-Nearest Neighbour classification. Interpret the results obtained.
- D. Plot RoC Curves
- E. Compare classification results of ID3, J48, Naïve-Bayes and k-NN classifiers for each dataset, and deduce which classifier is performing best and poor for each dataset and justify.

Unit 4 Demonstrate performing clustering on data sets

- A. Load each dataset into Weka and run simple k-means clustering algorithm with different values of k (number of desired clusters). Study the clusters formed. Observe the sum of squared errors and centroids, and derive insights.
- B. Explore other clustering techniques available in Weka.
- C. Explore visualization features of Weka to visualize the clusters. Derive interesting insights and explain.

Unit 5 Demonstrate performing Regression on data sets

- A. Load each dataset into Weka and build Linear Regression model. Study the clusters formed. Use Training set option. Interpret the regression model and derive patterns and conclusions from the regression results.
- B. Use options cross-validation and percentage split and repeat running the Linear Regression Model. Observe the results and derive meaningful results.
- C. Explore Simple linear regression technique that only looks at one variable.

Resource Sites:

- 1. http://www.pentaho.com/
- 2. http://www.cs.waikato.ac.nz/ml/weka/

Outcomes:

- Ability to understand the various kinds of tools.
- o Demonstrate the classification, clusters and etc. in large data sets

DATA MINING LAB

Objectives:

- To obtain practical experience using data mining techniques on real world data sets.
- Emphasize hands-on experience working with all real data sets.

List of Sample Problems:

Task 1: Credit Risk Assessment

Description:

The business of banks is making loans. Assessing the credit worthiness of an applicant is of crucial importance. You have to develop a system to help a loan officer decide whether the credit of a customer is good, or bad. A bank's business rules regarding loans must consider two opposing factors. On the one hand, a bank wants to make as many loans as possible. Interest on these loans is the banks profit source. On the other hand, a bank cannot afford to make too many bad loans. Too many bad loans could lead to the collapse of the bank. The bank's loan policy must involve a compromise: not too strict, and not too lenient.

To do the assignment, you first and foremost need some knowledge about the world of credit. You can acquire such knowledge in a number of ways.

1. Knowledge Engineering. Find a loan officer who is willing to talk. Interview her and try to represent her knowledge in the form of production rules.

- 2. Books. Find some training manuals for loan officers or perhaps a suitable textbook on finance. Translate this knowledge from text form to production rule form.
- 3. Common sense. Imagine yourself as a loan officer and make up reasonable rules which can be used to judge the credit worthiness of a loan applicant.
- Case histories. Find records of actual cases where competent loan officers correctly judged when, and when not to, approve a loan application.

The German Credit Data:

Actual historical credit data is not always easy to come by because of confidentiality rules. Here is one such dataset, consisting of 1000 actual cases collected in Germany. credit dataset (original) Excel spreadsheet version of the German credit data.

In spite of the fact that the data is German, you should probably make use of it for this assignment. (Unless you really can consult a real loan officer !)

A few notes on the German dataset

- DM stands for Deutsche Mark, the unit of currency, worth about 90 cents Canadian (but looks and acts like a quarter).
- owns_telephone. German phone rates are much higher than in Canada so fewer people own telephones.
- foreign_worker. There are millions of these in Germany (many from Turrkey). It is very hard to get German citizenship if you were not born of German parents.
- There are 20 attributes used in judging a loan applicant. The goal is the classify the applicant into one of two categories, good or bad.

Subtasks: (Turn in your answers to the following tasks)

- 1. List all the categorical (or nominal) attributes and the real-valued attributes seperately. (5 marks)
- What attributes do you think might be crucial in making the credit assessment ? Come up with some simple rules in plain English using your selected attributes. (5 marks)
- One type of model that you can create is a Decision Tree train a Decision Tree using the complete dataset as the training data. Report the model obtained after training. (10 marks)
- 4. Suppose you use your above model trained on the complete dataset, and classify credit good/bad for each of the examples in the dataset. What % of examples can you classify correctly? (This is also called testing on the training set) Why do you think you cannot get 100 % training accuracy? (10 marks)

- 5. Is testing on the training set as you did above a good idea? Why or Why not ? (10 marks)
- One approach for solving the problem encountered in the previous question is using cross-validation? Describe what is cross-validation briefly. Train a Decision Tree again using cross-validation and report your results. Does your accuracy increase/decrease? Why? (10 marks)
- 7. Check to see if the data shows a bias against "foreign workers" (attribute 20), or "personal-status" (attribute 9). One way to do this (perhaps rather simple minded) is to remove these attributes from the dataset and see if the decision tree created in those cases is significantly different from the full dataset case which you have already done. To remove an attribute you can use the preprocess tab in Weka's GUI Explorer. Did removing these attributes have any significant effect? Discuss. (10 marks)
- 8. Another question might be, do you really need to input so many attributes to get good results? Maybe only a few would do. For example, you could try just having attributes 2, 3, 5, 7, 10, 17 (and 21, the class attribute (naturally)). Try out some combinations. (You had removed two attributes in problem 7. Remember to reload the arff data file to get all the attributes initially before you start selecting the ones you want.) (10 marks)
- 9. Sometimes, the cost of rejecting an applicant who actually has a good credit (case 1) might be higher than accepting an applicant who has bad credit (case 2). Instead of counting the misclassifications equally in both cases, give a higher cost to the first case (say cost 5) and lower cost to the second case. You can do this by using a cost matrix in Weka. Train your Decision Tree again and report the Decision Tree and cross-validation results. Are they significantly different from results obtained in problem 6 (using equal cost)? (10 marks)
- Do you think it is a good idea to prefer simple decision trees instead of having long complex decision trees? How does the complexity of a Decision Tree relate to the bias of the model? (10 marks)
- 11. You can make your Decision Trees simpler by pruning the nodes. One approach is to use Reduced Error Pruning - Explain this idea briefly. Try reduced error pruning for training your Decision Trees using cross-validation (you can do this in Weka) and report the Decision Tree you obtain? Also, report your accuracy using the pruned model. Does your accuracy increase? (10 marks)
- 12. (Extra Credit): How can you convert a Decision Trees into "if-thenelse rules". Make up your own small Decision Tree consisting of 2-3

levels and convert it into a set of rules. There also exist different classifiers that output the model in the form of rules - one such classifier in Weka is rules. PART, train this model and report the set of rules obtained. Sometimes just one attribute can be good enough in making the decision, yes, just one ! Can you predict what attribute that might be in this dataset ? OneR classifier uses a single attribute to make decisions (it chooses the attribute based on minimum error). Report the rule obtained by training a one R classifier. Rank the performance of j48, PART and oneR. (10 marks)

Task Resources:

- Mentor lecture on Decision Trees
- Andrew Moore's Data Mining Tutorials (See tutorials on Decision Trees and Cross Validation)
- Decision Trees (Source: Tan, MSU)
- Tom Mitchell's book slides (See slides on Concept Learning and Decision Trees)
- Weka resources:
- o Introduction to Weka (html version) (download ppt version)
- o Download Weka
- Weka Tutorial
- ARFF format
- Using Weka from command line

Task 2: Hospital Management System

Data Warehouse consists Dimension Table and Fact Table.

REMEMBER The following

Dimension

The dimension object (Dimension):

- _ Name
- _ Attributes (Levels) , with one primary key
- _ Hierarchies

One time dimension is must.

About Levels and Hierarchies

Dimension objects (dimension) consist of a set of levels and a set of hierarchies defined over those levels. The levels represent levels of aggregation. Hierarchies describe parent-child relationships among a set of levels.

For example, a typical calendar dimension could contain five levels. Two

hierarchies can be defined on these levels:

H1: YearL > QuarterL > MonthL > WeekL > DayL

H2: YearL > WeekL > DayL

The hierarchies are described from parent to child, so that Year is the parent of Quarter, Quarter the parent of Month, and so forth.

About Unique Key Constraints

When you create a definition for a hierarchy, Warehouse Builder creates an identifier key for each level of the hierarchy and a unique key constraint on the lowest level (Base Level)

Design a Hospital Management system data warehouse (TARGET) consists of Dimensions Patient, Medicine, Supplier, Time. Where measures are 'NO UNITS', UNIT PRICE.

Assume the Relational database (SOURCE) table schemas as follows

TIME (day, month, year),

PATIENT (patient_name, Age, Address, etc.,)

MEDICINE (Medicine_Brand_name, Drug_name, Supplier, no_units, Uinit_Price, etc.,)

SUPPLIER :(Supplier_name, Medicine_Brand_name, Address, etc.,)

If each Dimension has 6 levels, decide the levels and hierarchies, Assume the level names suitably.

Design the Hospital Management system data warehouse using all schemas. Give the example 4-D cube with assumption names.

- Ability to add mining algorithms as a component to the exiting tools
- Ability to apply mining techniques for realistic data.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem

Tech. CSE-II Sem	L	T/P/D	С	
	4	-/-/-	4	

(A80014) MANAGEMENT SCIENCE

Objectives:

This course is intended to familiarise the students with the framework for the managers and leaders available for understanding and making decisions relating to issues related organisational structure, production operations, marketing, Human resource Management, product management and strategy.

UNIT -I:

Introduction to Management and Organisation: Concepts of Management and organization- nature, importance and Functions of Management, Systems Approach to Management - Taylor's Scientific Management Theory – Fayal's Principles of Management – Maslow's theory of Hierarchy of Human Needs – Douglas McGregor's Theory X and Theory Y– Hertzberg Two Factor Theory of Motivation - Leadership Styles, Social responsibilities of Management. Designing Organisational Structures: Basic concepts related to Organisation - Departmentation and Decentralisation, Types and Evaluation of mechanistic and organic structures of organisation and suitability.

UNIT -II:

Operations and Marketing Management: Principles and Types of Plant Layout-Methods of production (Job, batch and Mass Production), Work Study -Basic procedure involved in Method Study and Work Measurement – Business Process Reengineering (BPR) - Statistical Quality Control: control charts for Variables and Attributes (simple Problems) and Acceptance Sampling, TQM, Six Sigma, Deming's contribution to quality. Objectives of Inventory control, EOQ, ABC Analysis, Purchase Procedure, Stores Management and Stores Records – JIT System, Supply Chain Management, Functions of Marketing, Marketing Mix, and Marketing Strategies based on Product Life Cycle, Channels of distribution.

UNIT -III:

Human Resources Management (HRM): Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Placement, Wage and Salary Administration, Promotion, Transfer, Separation, Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating – Capability Maturity Model (CMM) Levels – Performance Management System.

UNIT -IV:

Project Management (PERT/CPM): Network Analysis, Programme

Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

UNIT -V:

Strategic Management and Contemporary Strategic Issues: Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and Implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Card as Contemporary Business Strategies.

TEXT BOOKS:

- 1. Stoner, Freeman, Gilbert, *Management*, 6th Ed, Pearson Education, New Delhi, 2004
- 2. P. Vijaya Kumar, N. Appa Rao and Ashima B. Chhalill, Cengage Learning India Pvt Ltd, 2012.

REFERENCE BOOKS:

- 1. Kotler Philip and Keller Kevin Lane: Marketing Management, Pearson, 2012.
- 2. Koontz and Weihrich: Essentials of Management, McGraw Hill, 2012.
- 3. Thomas N.Duening and John M.Ivancevich Management—Principles and Guidelines, Biztantra, 2012.
- 4. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2012.
- 5. Samuel C.Certo: Modern Management, 2012.
- 6. Schermerhorn, Capling, Poole and Wiesner: Management, Wiley, 2012.
- 7. Parnell: Strategic Management, Cengage, 2012.
- 8. Lawrence R Jauch, R.Gupta and William F.Glueck: Business Policy and Strategic Management, Frank Bros.2012.
- 9. Aryasri: Management Science, McGraw Hill, 2012

Outcomes:

By the end of the course, the student will be in a position to

- Plan an organisational structure for a given context in the organisation
- carry out production operations through Work study
- understand the markets, customers and competition better and price the given products appropriately.
- ensure quality for a given product or service
- plan and control the HR function better
- plan, schedule and control projects through PERT and CPM
- evolve a strategy for a business or service organisation

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem	L	T/P/D	С
	4	-/-/-	4

(A80551) WEB SERVICES

(Elective - III)

Objectives:

- To understand the details of web services technologies like WSDL, UDDI, SOAP
- To learn how to implement and deploy web service client and server
- To explore interoperability between different frameworks

UNIT- I

Evolution and Emergence of Web Services - Evolution of distributed computing, Core distributed computing technologies – client/server, CORBA, JAVA RMI, Microsoft DCOM, MOM, Challenges in Distributed Computing, role of J2EE and XML in distributed computing, emergence of Web Services and Service Oriented Architecture (SOA).

Introduction to Web Services – The definition of web services, basic operational model of web services, tools and technologies enabling web services, benefits and challenges of using web services.

Web Services Architecture – Web services Architecture and its characteristics, core building blocks of web services, standards and technologies available for implementing web services, web services communication models, basic steps of implementing web services.

UNIT- II

Fundamentals of SOAP – SOAP Message Structure, SOAP encoding, Encoding of different data types, SOAP message exchange models, SOAP communication and messaging, Java and Axis, limitations of SOAP.

UNIT- III

Describing Web Services – WSDL – WSDL in the world of Web Services, Web Services life cycle, anatomy of WSDL definition document, WSDL bindings, WSDL Tools, limitations of WSDL.

UNIT- IV

Discovering Web Services – Service discovery, role of service discovery in a SOA, service discovery mechanisms, UDDI – UDDI registries, uses of UDDI Registry, Programming with UDDI, UDDI data structures, Publishing API, Publishing, searching and deleting information in a UDDI Registry, limitations of UDDI.

UNIT- V

Web Services Interoperability – Means of ensuring Interoperability, Overview of .NET, Creating a .NET client for an Axis Web Service, creating Java client for a Web service, Challenges in Web Services Interoperability.

Web Services Security – XML security frame work, Goals of Cryptography, Digital signature, Digital Certificate, XML Encryption.

TEXT BOOK:

1. Developing Java Web Services, R. Nagappan, R. Skoczylas, R.P. Sriganesh, Wiley India.

REFERENCE BOOKS:

- 1. Java Web Service Architecture, James McGovern, Sameer Tyagi et al., Elsevier
- 2. Building Web Services with Java, 2nd Edition, S. Graham and others, Pearson Edn.
- 3. Java Web Services, D.A. Chappell & T. Jewell, O'Reilly, SPD.
- 4. Web Services, G. Alonso, F. Casati and others, Springer.

- Basic details of WSDL, UDDI, SOAP
- Implement WS client and server with interoperable systems

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem

T/P/D C -/-/- 4

L.

4

(A80538) SEMANTIC WEB AND SOCIAL NETWORKS

(Elective - III)

Objectives:

- To learn Web Intelligence
- To learn Knowledge Representation for the Semantic Web
- To learn Ontology Engineering
- To learn Semantic Web Applications, Services and Technology
- To learn Social Network Analysis and semantic web

UNIT- I

Thinking and Intelligent Web Applications, The Information Age, The World Wide Web, Limitations of Today's Web, The Next Generation Web.

Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web.

UNIT- II

Ontologies and their role in the semantic web, Ontologies Languages for the Semantic Web –Resource Description Framework(RDF) / RDF Schema, Ontology Web Language(OWL),UML,XML/XML Schema.

Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping.

UNIT- III

Logic, Rule and Inference Engines. Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base.

UNIT- IV

XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods,

What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks.

UNIT- V

Blogs and Online Communities, Web Based Networks. Building Semantic Web Applications with social network features.

TEXT BOOKS:

- 1. Thinking on the Web Berners Lee, Godel and Turing, Wiley interscience,2008.
- 2. Social Networks and the Semantic Web, Peter Mika, Springer, 2007.

REFERENCE BOOKS:

- Semantic Web Technologies, Trends and Research in Ontology Based Systems, J.Davies, Rudi Studer, Paul Warren, John Wiley & Sons.
- 2. Semantic Web and Semantic Web Services -Liyang Lu Chapman and Hall/CRC Publishers,(Taylor & Francis Group)
- 3. Information Sharing on the semantic Web Heiner Stuckenschmidt; Frank Van Harmelen, Springer Publications.
- 4. Programming the Semantic Web, T.Segaran, C.Evans, J.Taylor, O'Reilly, SPD.

- Ability to understand and knowledge representation for the semantic web.
- Ability to create ontology.
- Ability to build a blogs and social networks.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem

ar D. Tech. CSE-II Selli	L .		C
	4	-/-/-	4

ı.

T/D/D

~

(A80537) SCRIPTING LANGUAGES

(Elective - III)

Objectives:

The course demonstrates an in depth understanding of the tools and the scripting languages necessary for design and development of applications dealing with Bio-information/ Bio-data. The instructor is advised to discuss examples in the context of Bio-data/ Bio-information application development.

UNIT – I

Introduction to PERL and Scripting: Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT – II

Advanced perl: Finer points of looping, pack and unpack, file system, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

PHP Basics : PHP Basics- Features, Embedding PHP Code in your Web pages, Outputting the data to the browser, Data types, Variables, Constants, expressions, string interpolation, control structures, Function, Creating a Function, Function Libraries, Arrays, strings and Regular Expressions.

unit – III

Advanced PHP Programming: PHP and Web Forms, Files, PHP Authentication and Methodologies -Hard Coded, File Based, Database Based, IP Based, Login Administration, Uploading Files with PHP, Sending Email using PHP, PHP Encryption Functions, the Mcrypt package, Building Web sites for the World.

UNIT - IV

TCL : TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL-eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding , Perl-Tk.

UNIT – V

Python: Introduction to Python language, python-syntax, statements, functions, Built-in-functions and Methods, Modules in python, Exception Handling.

Integrated Web Applications in Python – Building Small, Efficient Python Web Systems, Web Application Framework.

TEXT BOOKS:

- 1. The World of Scripting Languages , David Barron, Wiley Publications.
- 2. Python Web Programming, Steve Holden and David Beazley, New Riders Publications.
- 3. Beginning PHP and MySQL, 3rd Edition, Jason Gilmore, Apress Publications (Dream tech.).

REFERENCE BOOKS:

- 1. Open Source Web Development with LAMP using Linux, Apache, MySQL, Perl and PHP, J.Lee and B.Ware(Addison Wesley) Pearson Education.
- 2. Programming Python, M.Lutz, SPD.
- 3. PHP 6 Fast and Easy Web Development, Julie Meloni and Matt Telles, Cengage Learning Publications.
- 4. PHP 5.1,I.Bayross and S.Shah, The X Team, SPD.
- 5. Core Python Programming, Chun, Pearson Education.
- 6. Guide to Programming with Python, M.Dawson, Cengage Learning.
- 7. Perl by Example, E.Quigley, Pearson Education.
- 8. Programming Perl,Larry Wall, T.Christiansen and J.Orwant,O'Reilly, SPD.
- 9. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
- 10. PHP and MySQL by Example, E.Quigley, Prentice Hall(Pearson).
- 11. Perl Power, J.P.Flynt, Cengage Learning.
- 12. PHP Programming solutions, V.Vaswani, TMH.

- Ability to understand the differences between scripting languages.
- Ability to apply your knowledge of the weaknesses of scripting languages to select implementation..
- Master an understanding of python especially the object oriented concepts.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem

4 -/-/- 4

L.

T/P/D

С

(A 80547) MULTIMEDIA & RICH INTERNET APPLICATIONS

(Elective - III)

Objectives:

This course aims to further develop students' competency in producing dynamic and creative graphic solutions for multimedia productions. It provides students with the basic concepts and techniques of interactive authoring. It also introduces students with the advanced scripting skills necessary for implementing highly interactive, rich internet applications using multimedia technologies and authoring tools. Students will develop aesthetic value and competencies in multimedia authoring. Artistic visual style and layout design are stressed, as well as the editing and integration of graphic images, animation, video and audio files. The course allows students to master industry-wide software and technologies to create highly interactive, rich internet applications.

UNIT - I

Fundamental concepts in Text and Image: Multimedia and hypermedia, World Wide Web, overview of multimedia software tools. Graphics and image data representation graphics/image data types, file formats, Color in image and video: color science, color models in images, color models in video.

UNIT- II

Fundamental concepts in video and digital audio: Types of video signals, analog video, digital video, digitization of sound, MIDI, quantization and transmission of audio.

Multimedia Data Compression: Lossless compression algorithms, Lossy compression algorithms, Image compression standards.

UNIT III

Basic Video compression techniques, Case study: MPEG Video Coding I, Basic Audio compression techniques, Case study: MPEG Audio compression.

Web 2.0: What is web 2.0, Search, Content Networks, User Generated Content, Blogging, Social Networking, Social Media, Tagging, Social Marking, Rich Internet Applications, Web Services, Mashups, Location Based Services, XML, RSS, Atom, JSON, and VoIP, Web 2.0 Monetization and Business Models, Future of the Web.

UNIT - IV

Rich Internet Applications(RIAs) with Adobe Flash : Adobe Flash-Introduction, Flash Movie Development, Learning Flash with Hands-on Examples, Publish your flash movie, Creating special effects with Flash, Creating a website splash screen, action script, web sources.

Rich Internet Applications(RIAs) with Flex 3 - Introduction, Developing with Flex 3, Working with Components, Advanced Component Development, Visual Effects and Multimedia,

UNIT - V

Ajax- Enabled Rich Internet Application : Introduction, Traditional Web Applications vs Ajax Applications, Rich Internet Application with Ajax, History of Ajax, Raw Ajax example using xmlhttprequest object, Using XML, Creating a full scale Ajax Enabled application, Dojo ToolKit.

TEXT BOOKS:

- 1. Fundamentals of Multimedia by Ze-Nian Li and Mark S. Drew PHI Learning, 2004
- 2. Professional Adobe Flex 3, Joseph Balderson, Peter Ent, et al, Wrox Publications, Wiley India, 2009.
- AJAX, Rich Internet Applications, and Web Development for Programmers, Paul J Deitel and Harvey M Deitel, Deitel Developer Series, Pearson Education.

REFERENCE BOOKS:

- 1. Multimedia Communications: Applications, Networks, Protocols and Standards, Fred Halsall, Pearson Education, 2001, rp 2005.
- 2. Multimedia Making it work, Tay Vaughan, 7th edition, TMH, 2008.
- Introduction to multimedia communications and Applications, Middleware, Networks, K.R.Rao, Zoran, Dragored, Wiley India, 2006, rp. 2009.
- 4. Multimedia Computing, Communications & Applications, Ralf Steinmetz and Klara Nahrstedt, Pearson Education, 2004
- 5. Principles of Multimedia, Ranjan Parekh, TMH, 2006.
- 6. Multimedia in Action, James E.Shuman, Cengage Learning, 198, rp 2008.
- 7. Multimedia Systems design, Prabhat K. Andleigh, Kiran Thakrar, PHI, 1986.
- Multimedia and Communications Technology, Steve Heath, Elsevier, 1999, rp 2003.
- 9. Adobe Flash CS3 Professional, Adobe press, Pearson Education, 2007.
- 10. Flash CS3 Professional Advanced, Russel Chun, Pearson Education, 2007.

- 11. Flash CS5, Chris Grover, O'Reilly, SPD, 2010.
- 12. SAMS Teach yourself Adobe flash CS3, Pearson Education, 2007.
- 13. Flex 4 Cookbook, Joshua Noble, et.al, O'Reilly,SPD 2010.
- 14. Flex3 A beginner's guide, Michele E.Davis, Jon A.Phillips, TMH, 2008.
- 15. Mastering Dojo,R.Gill,C.Riecke and A.Russell,SPD.

- Ability to create and design rich internet applications.
- Ability to develop different multimedia tools to produce web based and independent user interfaces.

COMPUTER SCIENCE AND ENGINEERING 2013-14 200 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem

L. T/P/D С 4

-/-/-4

(A80542) AD HOC AND SENSOR NETWORKS

(Elective - IV)

Objectives:

- To understand the concepts of sensor networks
- To understand the MAC and transport protocols for adhoc networks
- To understand the security of sensor networks
- To understand the applications of adhoc and sensor networks

UNIT- I

Introduction to Ad Hoc Wireless Networks: Characteristics of MANETs, Applications of MANETs, Challenges.

Routing in MANETs: Topology-based versus Position-based approaches, Topology based routing protocols, Position based routing, Other Routing Protocols.

UNIT- II

Data Transmission in MANETs: The Broadcast Storm, Multicasting, Geocasting

TCP over Ad Hoc Networks: TCP Protocol overview, TCP and MANETs, Solutions for TCP over Ad Hoc

UNIT- III

Basics of Wireless Sensors and Applications: The Mica Mote, Sensing and Communication Range, Design Issues, Energy consumption, Clustering of Sensors, Applications

Data Retrieval in Sensor Networks: Classification of WSNs, MAC layer, Routing layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs.

UNIT- IV

Security : Security in Ad hoc Wireless Networks, Key Management, Secure Routing, Cooperation in MANETs, Intrusion Detection Systems.

Sensor Network Platforms and Tools: Sensor Network Hardware, Sensor Network Programming Challenges, Node-Level Software Platforms

UNIT- V

Operating System - TinyOS

Imperative Language: nesC, Dataflow style language: TinyGALS, Node-Level Simulators, ns-2 and its sensor network extension, TOSSIM

TEXT BOOKS:

- Ad Hoc and Sensor Networks Theory and Applications, Carlos Corderio Dharma P.Aggarwal, World Scientific Publications / Cambridge University Press, March 2006
- 2. Wireless Sensor Networks: An Information Processing Approach, *Feng Zhao, Leonidas Guibas*, Elsevier Science imprint, Morgan Kauffman Publishers, 2005, rp2009.

REFERENCE BOOKS:

- 1. Adhoc Wireless Networks Architectures and Protocols, C.Siva Ram Murthy, B.S.Murthy, Pearson Education, 2004
- 2. Wireless Sensor Networks Principles and Practice, Fei Hu, Xiaojun Cao, An Auerbach book, CRC Press, Taylor & Francis Group, 2010
- Wireless Ad hoc Mobile Wireless Networks Principles, Protocols and Applications, Subir Kumar Sarkar, et al., Auerbach Publications, Taylor & Francis Group, 2008.
- 4. Ad hoc Networking, *Charles E.Perkins*, Pearson Education, 2001.
- 5. Wireless Ad hoc Networking, *Shih-Lin Wu, Yu-Chee Tseng,* Auerbach Publications, Taylor & Francis Group, 2007
- Wireless Ad hoc and Sensor Networks Protocols, Performance and Control, Jagannathan Sarangapani, CRC Press, Taylor & Francis Group, 2007, rp 2010.
- Security in Ad hoc and Sensor Networks, Raheem Beyah, et al., World Scientific Publications / Cambridge University Press, 2010
- 8. Ad hoc Wireless Networks A communication-theoretic perspective, Ozan K.Tonguz, Gialuigi Ferrari, Wiley India, 2006, rp2009.
- 9. Wireless Sensor Networks Signal processing and communications perspectives, Ananthram Swami, et al., Wiley India, 2007, rp2009.

- Ability to understand the concept of ad-hoc and sensor networks.
- Ability to design and implement sensor network protocols.
- Ability to set up and evaluate measurements of protocol performance in sensor networks..

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

L
L

T/P/D C -/-/- 4

4

(A80550) STORAGE AREA NETWORKS

(Elective – IV)

Objectives:

- Understand Storage Area Networks characteristics and components.
- Become familiar with the SAN vendors and their products
- Learn Fibre Channel protocols and how SAN components use them to communicate with each other
- Become familiar with Cisco MDS 9000 Multilayer Directors and Fabric Switches Thoroughly learn Cisco SAN-OS features.
- Understand the use of all SAN-OS commands. Practice variations of SANOS features

UNIT- I

Review data creation and the amount of data being created and understand the value of data to a business, challenges in data storage and data management, Solutions available for data storage, Core elements of a data center infrastructure, role of each element in supporting business activities

Hardware and software components of the host environment, Key protocols and concepts used by each component ,Physical and logical components of a connectivity environment ,Major physical components of a disk drive and their function, logical constructs of a physical disk, access characteristics, and performance Implications.

UNIT- II

Concept of RAID and its components, Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6, Compare and contrast integrated and modular storage systems, High-level architecture and working of an intelligent storage system

Evolution of networked storage, Architecture, components, and topologies of FC-SAN, NAS, and IP-SAN, Benefits of the different networked storage options, Understand the need for long-term archiving solutions and describe how CAS fulfills the need, Understand the appropriateness of the different networked storage options for different application environments

UNIT- III

List reasons for planned/unplanned outages and the impact of downtime,

Impact of downtime, Differentiate between business continuity (BC) and disaster recovery (DR) ,RTO and RPO, Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures.

UNIT- IV

Architecture of backup/recovery and the different backup/recovery topologies , replication technologies and their role in ensuring information availability and business continuity, Remote replication technologies and their role in providing disaster recovery and business continuity capabilities

UNIT- V

Identify key areas to monitor in a data center, Industry standards for data center monitoring and management, Key metrics to monitor for different components in a storage infrastructure, Key management tasks in a data center. Information security, Critical security attributes for information systems, Storage security domains, List and analyzes the common threats in each domain

Virtualization technologies, block-level and file-level virtualization technologies and processes.

Case Studies:

The technologies described in the course are reinforced with EMC examples of actual solutions.

Realistic case studies enable the participant to design the most appropriate solution for given sets of criteria.

TEXT BOOK:

- 1. EMC Corporation, Information Storage and Management, Wiley. **REFERENCE BOOKS:**
- 1. Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, Osborne, 2003.
- 2. Marc Farley, "Building Storage Networks", Tata McGraw Hill, Osborne, 2001.
- 3. Meeta Gupta, Storage Area Network Fundamentals, Pearson Education Limited, 2002.

- Ability to demonstrate the storage area networks and their products
- Ability to provide the mechanisms for the backup/recovery.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B	.Tech. CS	SE-II Sem
-----------	-----------	-----------

L	T/P/D	С
4	-/-/-	4

(A80543) DATABASE SECURITY

(Elective-IV)

Objectives:

- To learn the security of databases
- To learn the design techniques of database security
- To learn the secure software design

UNIT- I

Introduction: Introduction to Databases Security Problems in Databases Security Controls Conclusions

Security Models -1: Introduction Access Matrix Model Take-Grant Model Acten Model PN Model Hartson and Hsiao's Model Fernandez's Model Bussolati and Martella's Model for Distributed databases

UNIT- II

Security Models -2: Bell and LaPadula's Model Biba's Model Dion's Model Sea View Model Jajodia and Sandhu's Model The Lattice Model for the Flow Control conclusion

Security Mechanisms : Introduction User Identification/Authentication Memory Protection Resource Protection Control Flow Mechanisms Isolation Security Functionalities in Some Operating Systems Trusted Computer System Evaluation Criteria

UNIT- III

Security Software Design : Introduction A Methodological Approach to Security Software Design Secure Operating System Design Secure DBMS Design Security Packages Database Security Design

Statistical Database Protection & Intrusion Detection Systems: Introduction Statistics Concepts and Definitions Types of Attacks Inference Controls evaluation Criteria for Control Comparison. Introduction IDES System RETISS System ASES System Discovery

UNIT- IV

Models For The Protection Of New Generation Database Systems -1: Introduction A Model for the Protection of Frame Based Systems A Model for the Protection of Object-Oriented Systems SORION Model for the Protection of Object-Oriented Databases

UNIT- V

Models For The Protection Of New Generation Database Systems -2: A

Model for the Protection of New Generation Database Systems: the Orion Model Jajodia and Kogan's Model A Model for the Protection of Active Databases Conclusions

TEXT BOOKS:

- 1. Database Security by Castano Pearson Edition (1/e)
- 2. Database Security and Auditing: Protecting Data Integrity and Accessibility, 1st Edition, Hassan Afyouni, THOMSON Edition.

REFERENCE BOOK:

1. Database security by alfred basta, melissa zgola, CENGAGE learning.

- Ability to carry out a risk analysis for large database.
- Ability to set up, and maintain the accounts with privileges and roles.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem	L	T/P/D	С
	4	-/-/-	4

(A80439) EMBEDDED SYSTEMS

(Elective –IV)

Objectives:

- Design embedded computer system hardware
- Design, implement, and debug multi-threaded application software that operates under real-time constraints on embedded computer systems
- Use and describe the implementation of a real-time operating system on an embedded computer system
- Formulate an embedded computer system design problem incljuding multiple constraints, create a design that satisfies the constraints, *implement the design in hardware and software, and measure performance against the design constraints
- Create computer software and hardware implementations that operate according to well-known standards
- Organize and write design documents and project reports
- Organize and make technical presentations that describe a design. **UNIT I**

Embedded Computing : Introduction, Complex Systems and Microprocessor, The Embedded System Design Process, Formalisms for System Design, Design Examples. **(Chapter I from Text Book 1, Wolf).**

The 8051 Architecture : Introduction, 8051 Micro controller Hardware, Input/ Output Ports and Circuits, External Memory, Counter and Timers, Serial data Input/Output, Interrupts. (**Chapter 3 from Text Book 2, Ayala**).

UNIT - II

Basic Assembly Language Programming Concepts : The Assembly Language Programming Process, Programming Tools and Techniques, Programming the 8051. Data Transfer and Logical Instructions.

(Chapters 4,5 and 6 from Text Book 2, Ayala).

Arithmetic Operations, Decimal Arithmetic. Jump and Call Instructions, Further Details on Interrupts.

(Chapter 7and 8 from Text Book 2, Ayala) UNIT - III

Applications : Interfacing with Keyboards, Displays, D/A and A/D

Conversions, Multiple Interrupts, Serial Data Communication. (Chapter 10 and 11 from Text Book 2, Ayala).

Introduction to Real – Time Operating Systems : Tasks and Task States, Tasks and Data, Semaphores, and Shared Data; Message Queues, Mailboxes and Pipes, Timer Functions, Events, Memory Management, Interrupt Routines in an RTOS Environment. (Chapter 6 and 7 from Text Book 3, Simon).

UNIT - IV

Basic Design Using a Real-Time Operating System : Principles, Semaphores and Queues, HardReal-Time Scheduling Considerations, Saving Memory and Power, An example RTOS like uC-OS (Open Source); Embedded Software Development Tools: Host and Target machines, Linker/ Locators for Embedded

Software, Getting Embedded Software into the Target System; Debugging Techniques: Testing on Host Machine, Using Laboratory Tools, An Example System. (Chapter 8,9,10 & 11 from Text Book 3, Simon).

UNIT – V

Introduction to advanced architectures : ARM and SHARC, Processor and memory organization and Instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled Systems, Design Example-Elevator Controller. (Chapter 8 from Text Book 1, Wolf).

TEXT BOOKS :

- 1. Computers and Components, Wayne Wolf, Elseveir.
- 2. The 8051 Microcontroller , Kenneth J.Ayala, Thomson.

REFERENCE BOOKS :

- 1. Embedding system building blocks, Labrosse, via CMP publishers.
- 2. Embedded Systems, Raj Kamal, TMH.
- 3. Micro Controllers, Ajay V Deshmukhi, TMH.
- 4. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley.
- 5. Microcontrollers, Raj kamal, Pearson Education.
- 6. An Embedded Software Primer, David E. Simon, Pearson Education.

Outcomes:

- Ability to understanding of general system theory and how this applies to embedded system.
- Ability to build a prototype circuit on breadboard using 8051 microcontroller.

207 -

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERS	ITY I	HYDERA	BAD
IV Year B.Tech. CSE-II Sem	L	T/P/D	С
	-	-/-/-	2
(A80087) INDUSTRY ORIENTED MINI PROJECT			

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem	L	T/P/D	С
	-	-/6/-	2
· · · · · · · · · · · · · · · · · · ·			

(A80089) SEMINAR

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. CSE-II Sem	L	T/P/D	С
	-	-/15/-	10
(A80088) PROJECT WORK			

(A80088) PROJECT WORK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD			
IV Year B.Tech. CSE-II Sem	L	T/P/D	С
	-	-/-/-	2

(A80090) COMPREHENSIVE VIVA